0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ядерный двигатель для космоса что это

Космическая тяга: сможет ли Россия создать ядерный двигатель для ракет

В России провели испытания системы охлаждения ядерной энергодвигательной установки (ЯЭДУ) — одного из ключевых элементов космического аппарата будущего, на котором можно будет совершать межпланетные полеты. Зачем в космосе нужен ядерный двигатель, как он работает и почему «Роскосмос» считает эту разработку главным российским космическим козырем, рассказывают «Известия».

Как все начиналось

Convair NB-36H, самолет-лаборатория для испытания атомных реакторов в полете

Сергей Павлович Королев, один из основоположников отечественной космонавтики, давно мечтал о мощной силовой атомной установке для ракет. Не дремали и ученые на Западе, в частности в США. Ими в 1950—1960 годах был разработан «Орион» — проект пилотируемого реактивно-импульсного космического корабля («взрыволёт») для исследования межпланетного и межзвездного пространства, разрабатывавшийся в США.

Впервые идею «Ориона» предложили Станислав Улам и Корнелиус Эверетт в Лос-Аламосе в 1955 году. Их концепция заключалась в следующем: взрывы водородных бомб, выбрасываемых из корабля, вызывали испарение дисков, выбрасываемых вслед за бомбами. Расширяющаяся плазма толкала корабль. По проекту «Орион» проводились не только расчеты, но и натурные испытания. Это были летные испытания моделей, движимых химическими взрывчатыми веществами. Модели называли put-puts или hot rods. Несколько моделей было разрушено, но один 100-метровый полет в ноябре 1959-го был успешен и показал, что импульсный полет мог быть устойчивым.

Первоначально «Орион» предполагалось запускать с Земли, с атомного полигона Джекесс-Флетс, расположенного в Неваде. Аппарат должен был иметь форму пули для преодоления атмосферы Земли. Корабль устанавливался на восьми стартовых башнях высотой 75 метров для того, чтобы уберечь персонал от возможного взрыва ядерного устройства у поверхности Земли. При запуске каждую секунду должен был производиться один взрыв мощностью 0,1 кт (для сравнения: мощность бомб, сброшенных на Хиросиму и Нагасаки, была равной 20 кт, то есть в 200 раз мощнее). После выхода из атмосферы каждые десять секунд должна была взрываться одна 20-кт бомба.

Основной целью проекта было создание корабля для исследования Солнечной системы. Проект «Орион» был закрыт в 1965 году. Дальнейшим развитием идей, заложенных в основу «Ориона», можно считать межзвездный зонд «Дедал». Это был один из первых детальных технических проектов по созданию возможного непилотируемого межзвездного космического аппарата. Он проводился с 1973 по 1977 год группой из одиннадцати ученых и инженеров Британского межпланетного общества. Проект предусматривал строительство на орбите Юпитера мощного двухступенчатого беспилотного корабля с термоядерными двигателями.

Проект «Дедал»

По расчетам, «Дедал» должен был за 50 лет долететь до звезды Барнарда (одна из ближайших звезд), не тормозясь пройти мимо нее по пролетной траектории, собрать сведения о звезде и планетах и затем по радиоканалу передать результаты исследований на Землю. Реальной заслугой проекта «Дедал» явилось то, что он сломал стереотипное представление о звездолетах как о чем-то далеком и сверхфантастическом.

А в это время в Советском Союзе мечты С. П. Королева о ядерном ракетном двигателе (ЯРД) начали осуществляться лишь за два года до запуска первого человека в космос. Именно тогда произошла определяющая во всех отношениях встреча «трех К», трех выдающихся ученых: Курчатова Игоря, «отца» нашей атомной бомбы, Келдыша Мстислава, главного теоретика космонавтики и математики, и Королева Сергея, главного конструктора ракет. Именно на этой встрече и было принято решение о создании атомного ракетного двигателя. И он был создан в короткое время.

Испытания реактора проводили в 1978—1981 годах на атомном полигоне в Семипалатинске, а самого двигателя — на стенде в Подмосковье, в Загорске. Всего было проведено более 250 испытаний двигателей, в результате которых был создан самый настоящий и работоспособный двигатель, отвечавший всем предъявленным требованиям. Но наступила перестройка, и проект отложили до лучших дней.

Новый ядерный двигатель для космоса Россия планирует запустить в коммерческую эксплуатацию в ближайшие годы. Предполагаемые характеристики газотурбинной ЯЭРДУ следующие. В качестве реактора используется газоохлаждаемый реактор на быстрых нейтронах, температура рабочего тела (смесь He/Xe) перед турбиной — 1500 К, КПД преобразования тепловой в электрическую энергию — 35%, тип холодильника-излучателя – капельный. Масса энергоблока (реактор, радиационная защита и система преобразования, но без холодильника-излучателя) – 6 800 кг.

Космические ядерные двигатели (ЯЭУ, ЯЭУ совместно с ЭРДУ) планируется использовать:

— В составе будущих космических транспортных средств.

— Как источников электроэнергии для энергоемких комплексов и космических аппаратов.

— Для решения первых двух задач в транспортно-энергетическом модуле по обеспечению электроракетной доставки тяжелых космических кораблей и аппаратов на рабочие орбиты и дальнейшее длительное энергоснабжение их аппаратуры.

Новейшее время

В XXI веке настало время создать новый ядерный двигатель для космоса. В октябре 2009 года на заседании Комиссии при президенте РФ по модернизации и технологическому развитию экономики России был официально утвержден новый российский проект «Создание транспортно-энергетического модуля с использованием ядерной энергодвигательной установки мегаваттного класса». Головными разработчиками являются:

  • Реакторной установки – ОАО «НИКИЭТ».
  • Ядерно-энергетической установки с газотурбинной схемой преобразования энергии, ЭРДУ на основе ионных электроракетных двигателей и ЯЭРДУ в целом – ГНЦ «Исследовательский центр им. М. В. Келдыша», который является также ответственной организацией по программе разработки транспортно-энергетического модуля (ТЭМ) в целом.
  • РКК «Энергия» в качестве генерального конструктора ТЭМ должна разработать автоматический аппарат с этим модулем.

Ядерный ракетный двигатель строят для полетов на Марс. Чем он опасен?

NASA разработает ядерный двигатель для быстрого полета на Марс. Ракеты с ядерными двигателями будут более мощными и вдвое более эффективными, чем с химическими, которые используются сегодня. Рассказываем подробнее о разработке, как быстро она будет передвигаться и чем опасна.

Что такое ядерный ракетный двигатель?

Ядерный ракетный двигатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги.

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подается из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу.

Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твердое, расплав или высокотемпературный газ (либо даже плазма).

Твердофазный ядерный ракетный двигатель

В твердофазных ЯРД (ТфЯРД) делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки.

Температура нагрева ограничена температурой плавления элементов конструкции (не более 3000 К). Удельный импульс твердофазного ЯРД, по современным оценкам, составит 850–900 с, что более чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей.

Наземные демонстраторы технологий ТфЯРД в ХХ веке были созданы и успешно испытаны на стендах (программа NERVA в США, РД-0410 в СССР).

Газофазный ядерный ракетный двигатель

Газофазный ядерный реактивный двигатель (ГЯРД) — концептуальный тип реактивного двигателя, в котором реактивная сила создаётся за счёт выброса теплоносителя (рабочего тела) из ядерного реактора, топливо в котором находится в газообразной форме или в виде плазмы. Считается, что в подобных двигателях удельный импульс составит 30–50 тыс. м/с.

Перенос тепла от топлива к теплоносителю достигается в основном за счет излучения, большей частью в ультрафиолетовой области спектра (при температурах топлива около 25 000 °C).

Читать еще:  Что такое двигатель курсор

Ядерный импульсный двигатель

Атомные заряды мощностью примерно в килотонну на этапе взлета должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу.

Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлете корабль должен лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

По проекту «Орион» проводились не только расчеты, но и натурные испытания. Летные испытания моделей летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка).

Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем. Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок.

Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы были размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповрежденными, тонкий слой графита испарился (аблировал) с их поверхностей.

В СССР аналогичный проект разрабатывался в 1950–1970-х годах. Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30–40 км от поверхности Земли. Затем предполагалось включать основной ядерно-импульсный двигатель.

Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершен. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Ядерная электродвигательная установка

Ядерная электродвигательная установка (ЯЭДУ) используется для выработки электроэнергии, которая, в свою очередь, используется для работы электрического ракетного двигателя.

Подобная программа в США (проект NERVA) была свернута в 1971 году, но в 2020 году американцы вновь вернулись к данной теме, заказав разработку ядерного теплового двигателя (Nuclear Thermal Propulsion, NTP) компании Gryphon Technologies для военных космических рейдеров на атомных двигателях для патрулирования окололунного и околоземного пространства, также с 2015 года идут работы по проекту Kilopower.

С 2010 года в России начались работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем (космический буксир «Нуклон»). На 2021 год ведется отработка макета; к 2025 году планируется создать опытные образцы данной ядерной энергоустановки; заявлена плановая дата летных испытаний космического тягача с ЯЭДУ — 2030 год.

Мощность

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года.

Ядерный двигатель опасен?

Основным недостатком является высокая радиационная опасность двигательной установки:

  • потоки проникающей радиации (гамма-излучение, нейтроны) при ядерных реакциях;
  • вынос высокорадиоактивных соединений урана и его сплавов;
  • истечение радиоактивных газов с рабочим телом.

Использование открытия российских ученых в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Нужно было обеспечить безопасность его выхлопа.

Защита малогабаритного ядерного двигателя меньше, чем у большего по размерам, поэтому нейтроны будут проникать в «камеру сгорания», тем самым с некоторой вероятностью делая радиоактивным все вокруг.

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.

Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей. Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.

Учитывая же, что процент углерода, становящийся радиоактивным, величина еще на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Собираются ли использовать ядерный двигатель для новейших полетов в космос?

Да, в начале февраля стало известно, что NASA проведет тестирование новейшего ядерного двигателя для полетов на Марс. Ожидается, что с его помощью можно будет добраться до Красной планеты всего лишь за три месяца.

В последние годы ученые и инженеры NASA и других космических агентств мира активно обсуждают планы по постройке постоянных обитаемых баз на поверхности Луны и Марса.

  • В чем его преимущества?

Главным ключом к обеспечению их автономности и удешевлению постройки специалисты NASA считают технологии трехмерной печати, позволяющие использовать воду и местные ресурсы — почву, горные породы и газы из атмосферы — для постройки зданий базы прямо на месте.

Подобные принтеры, как показывают опыты на борту МКС и на Земле, позволяют напечатать почти все необходимое для жизни колонистов на Марсе, за исключением одного, самой главного компонента базы — источника питания, чья мощность была бы достаточной для обеспечения работы самого 3D-принтера, а также питания и обогрева всей базы.

В рамках подготовки NASA к высадке на Марс в 2035 г. американская компания Ultra Safe Nuclear Technologies (USNT) из Сиэтла предложила свое решение — ядерный тепловой двигатель (NTP)

  • Каким будет ядерный двигатель?

USNT предлагает классическое решение — ядерный двигатель с использованием сжиженного водорода в качестве рабочего тела: ядерный реактор вырабатывает тепло из уранового топлива, эта энергия нагревает жидкий водород, проходящий по теплоносителям, который расширяется в газ и выбрасывается через сопло двигателя, создавая тягу.

Одна из основных проблем при создании такого типа двигателей — найти урановое топливо, которое может выдерживать резкие колебания температуры внутри двигателя. В USNT утверждают, что решили эту проблему, разработав топливо, которое может работать при температурах до 2 400 градусов Цельсия.

Топливная сборка содержит карбид кремния: этот материал, используемый в слое триструктурально-изотропного покрытия, образует газонепроницаемую преграду, препятствующую утечке радиоактивных продуктов из ядерного реактора, защищая космонавтов.

  • Безопасность

Кроме того, для защиты экипажа и на случай непредвиденных ситуаций ядерный двигатель не будет использоваться во время старта с Земли — он начнет работу уже на орбите, чтобы минимизировать возможные повреждения в случае аварии или нештатной работы.

Елизавета Приставка

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Русский ядерный двигатель для космического корабля: Миф или ближайшее будущее?

Российская ракета с ядерной двигательной установкой может отправиться в космос на испытательный полёт уже в этом году. Об этом Царьград информировал доверенный источник, знакомый с ситуацией в русской космической отрасли.

Технически там всё практически ясно, — рассказал специалист, знакомый с научной стороной проблемы. — Схема двигателя понятна, ионный прототип с хорошим удельным импульсом разработан, изготовлен и испытан на стендах. Есть представление о ракете в целом, кое-что тоже испытывается. Если поднапрячься, изделие может быть отправлено для испытаний в реальном космосе достаточно быстро, не исключаю, что и в нынешнем году, хотя говорят в целом о двадцатых годах.

Но это всё — именно «может быть», со вздохом дополнил учёный. Ибо сегодня в космической отрасли и с исполнительной дисциплиной, мягко говоря, есть сложности, и в целом отмечаются метания, интенсивность которых, также мягко говоря, набрала слишком размашистую амплитуду…

Совещание о ракетоплане

Вовсе не случайно, отметил источник, что недавно была организована утечка информации о совещании в «Роскосмосе», где прозвучал призыв готовиться к переходу космонавтики на ракетопланы с ядерной двигательной установкой.

Читать еще:  Выскочила ошибка двигателя троит

Согласно сообщению, вышедшему в РИА Новости, совещание по перспективам создания многоразовой ракетно-космической техники, состоявшееся в госкорпорации, завершилось составлением предложения для предприятий, в котором значилось «рассмотрение принципиально новых компоновок» для многоразовых космических систем. Среди этих компоновок упоминались также и «ракетопланы с ядерной двигательной установкой».

Ракетопланы, разъяснил информатор Царьграда, — если это, правда, не всего лишь словцо, полюбившееся «эффективным менеджерам», как не без яда добавил он, — это практически космические самолёты, умеющие летать в атмосфере и поднимающиеся в космос на крыльях. Неслучайно в контексте новости о совещании в «Роскосмосе» упоминались многоразовый корабль «Буран», орбитальный самолёт «Бор», многоразовые крылатые ускорители «Байкал» для ракеты «Ангара».

«Буран». Фото: www.globallookpress.com

Иное дело, что подобные аппараты не обязательно должны летать на ядерных двигательных установках, как не летал, например, тот же «Буран». Но факт и то, заявил учёный, что нынешние химические ракетные виды топлива практически близки к исчерпанию энергетического потенциала и на них невозможна межпланетная космонавтика. То есть ждать по году, а то и по десятилетию, покамест автоматические зонды доберутся до Марса, Юпитера или объекта Ультима Туле в поясе Койпера, — это можно. Сидя в своей лаборатории или дома под надёжным укрытием атмосферы и земных магнитных полей от опасных космических излучений. Но вот отправляться в полуторагодичный полёт на Марс без возможности сманеврировать и в случае чего вернуться — это слишком большой риск при слишком небольших шансах на успех.

Мы ещё автоматические зонды с Марса не научились возвращать, — подытожил консультант Царьграда в космической сфере. — Где уж думать о том, как вернуть корабль с людьми, летящий, по сути, как камушек, практически неуправляемый в полёте.

Корабль с ядерным двигателем

В чём принципиальная разница между нынешними ракетами с химическими двигателями и транспортно-энергетическими модулями на основе ядерной энергодвигательной установки?

Первые похожи на набор цистерн с топливом, которые поднимают корабль на орбиту, это топливо вырабатывая, а «цистерны» отбрасывая. Эта схема действует уже 70 лет и стала за это время достаточно отработанной и надёжной. Но! Чем сложнее техника, чем больше в ней деталей — тем быстрее случается её отказ. Как ни совершенствуй и ни контролируй её. Даже без злого умысла — чистая статистика, закон больших чисел. Что погубило, скажем, советскую лунную программу в 1960-х годах? Да в значительной степени то, что синхронизировать работу 30 двигателей первой ступени, 8 — второй и 4 — третьей было задачей непосильной для тогдашней техники.

Но и в случае удачного сложения всех обстоятельств выведенное на орбиту изделие оказывается с очень ограниченным запасом топлива, не позволяющим совершать полноценные манёвры в космосе. То-то вон и МКС приходится поднимать, чтобы не соскользнула с нужной орбиты, с помощью дополнительного топлива и транспортных кораблей. А теперь представим, что будет делать подобная МКС возле Марса. И как её уводить оттуда?

А вот ядерная энергодвигательная установка от таких проблем практически свободна. Главное только — не перепутать: одно дело — двигатель для неё, другое — энергетика для двигателя. Энергетику обеспечивает ядерный реактор, который даёт электрический ток. Считается, что мощность тока должна быть не менее чем на мегаваттном уровне.

Фото: Billion Photos / Shutterstock.com

А вот двигатель — система отдельная, которая на этом токе и работает. В той системе, над которой российские специалисты работают как минимум с 2009 года, двигатель используется ионный. Точнее, не совсем, но принцип, в общем, один — плазменный. Между двумя электродами — анодом и катодом — размещена рабочая камера, в которую подаётся рабочее тело — например, газ ксенон. Между анодом и катодом устраивается большая разность потенциалов, и разряды тока ионизируют рабочее тело. Ионы эти разгоняются в нужном направлении, толкая космический корабль в противоположную сторону.

Но нужен также холодильник, чтобы охлаждать реактор. Тоже не без подвоха система, хотя, казалось бы, какой нужен холодильник, раз вокруг — вакуум и абсолютный нуль? Но вот как раз именно из-за того, что пустота теплоотводными качествами не обладает, пришлось конструкторам изобретать нечто вроде постоянной водной смеси вокруг реактора.

Мы — первые!

Дальнейшие технические подробности не очень интересны. Можно сказать лишь, что российским учёным и конструкторам удалось сделать огромную по сложности работу. Как по замыслу, так и по исполнению. Американцам, которые тоже корпели над этой темой, не удалось за долгие годы даже приблизиться к созданию реактора, стабильно работающего в космосе. После чего джентльмены поступили так, как им и положено: добились решения ООН по запрету использования ядерных энергодвигательных установок в космосе. Дело было при… нетрудно догадаться: Горбачёве.

Так что ждём предметных возмущений от американцев, когда дойдёт дело до испытаний ЯЭДУ в космосе…

В чём основные преимущества и недостатки ядерных двигательных установок? Удобство — в обращении с рабочим телом и в его хранении. Это всего лишь нейтральный неопасный газ в жидком или твёрдом виде. Очень долгий срок службы: время непрерывной работы такого двигателя — проверено — составляет более 3 лет.

Высокая тяга: плазменный двигатель в 20 раз превосходит по этому показателю двигатель химический. Высокий удельный импульс: у ионного двигателя ИД-500, сделанного в Центре имени М.В. Келдыша, удельный импульс составляет 70 000 м/с. Но вообще ионы могут разгоняться под действием тока до скоростей большее 200 км/с (у химических двигателей — 3-4,5 км/с). Благодаря всему этому до Марса можно долететь за полтора месяца при полностью управляемом режиме.

И всё это — на расстоянии вытянутой руки! Россия может стать первой страной, не просто отправившей человека к Марсу, но первой в переходе на качественно новый способ передвижения в космосе!

Может. Но станет ли?

«Ничего комментировать не могу…»

В разговоре с Царьградом очень информированный эксперт в области космических исследований академик Михаил Маров, когда-то сам принимавший участие в разработке межпланетных космических аппаратов, продемонстрировал скепсис относительно перспектив скорого испытания русского космического корабля с ядерной двигательной установкой.

Академик РАН, заведующий отделом планетных исследований и космохимии Института геохимии и аналитической химии им. В.И. Вернадского РАН Михаил Маров. Фото: Георгий Поляков/Интерпресс/ТАСС

Дело в том, что я бы мог вам комментировать более или менее ответственно, если бы дело шло о советской эпохе, — заявил он. — Вот тогда было всё, в общем, довольно чётко, хотя и много было секретности. Но то, что было решено, довольно чётко выполнялось. Сейчас же я ничего комментировать не могу. Потому что все планы сегодня уползают вправо, причём никто за это ответственности не несёт. Хотя эти проекты, скажем, «Луна-Глоб», «Луна-Ресурс» — всё это в федеральной космической программе. А тогда, если проект был в аналоге федеральной программы, то есть назван в постановлении ЦК и Совмина, то если генеральный или главный конструктор говорил, что он изделие вовремя не может сделать, ему говорили очень коротко и спокойно: ну, тогда положишь на стол партбилет. И это, как вы понимаете, было настолько значимо с точки зрения крушения карьеры, что люди делали всё, что могли и не могли, чтобы выдержать плановые сроки.

Вот жил в своё время конструктор Георгий Бабакин, напомнил академик Маров. Это человек, который за шесть лет сделал 16 космических аппаратов!

«При мне он обещал Келдышу сделать за два года возврат грунта с Луны, — рассказал учёный. — И это вошло потом в постановление ЦК и Совмина. И это было сделано. А вот сейчас, когда вы меня спрашиваете, я был бы очень-очень рад сказать: да, всё великолепно. Всё, что и как заявлено, будет сделано. Но я не могу так сказать».

Читать еще:  Что самотеком смазывается в двигателе

Так что хорошо то, что делается. Но нашему космосу сегодня больше всего нужна простая метла. Которая подчистила бы все те горы мусора, полуправд и пустозвонства, которые скопились в отрасли за последние десятилетия.

Двигателестроение

текст Владимир Тесленко , кандидат химических наук

Россия — абсолютный мировой монополист в разработке энергодвигательной установки с ядерным реактором мегаваттного класса.

Проект создания транспортно-энергетического модуля на основе ядерной энергодвигательной установки (ЯЭДУ) мегаваттного класса выполняется совместно предприятиями Росатома и Роскосмоса в соответствии с решением, принятым в 2009 году президентской комиссией по модернизации. Не имеющая аналогов энерготранспортная установка позволит создать качественно новую технику высокой энерговооруженности для изучения и освоения дальнего космоса. Новый проект предполагает использование ионных электрореактивных двигателей, в которых реактивная тяга создается за счет ускоренного электрическим полем потока ионов. При использовании космических ядерных энергоустановок можно приступить к решению таких задач, как полет на Марс, детальные исследования планет и их спутников, промышленное производство в космосе. Также можно будет заниматься очисткой околоземного космического пространства от космического мусора, бороться с астероидной опасностью, создавать на планетах автоматизированные базы.

Большими достоинствами проекта являются практически важные эксплуатационные характеристики — высокий ресурс (10 лет эксплуатации), значительный межремонтный интервал и продолжительное время работы на одном включении. Они не могут не впечатлять специалистов из других стран, в первую очередь США.

Тайный проект

ЯЭДУ содержит три главные устройства: 1) реакторную установку с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор); 2) электроракетную двигательную установку; 3) холодильник-излучатель.

Проблема радиационной безопасности решается теневой защитой — реактор закрывают только с одной стороны, с той, где расположено оборудование и полезный груз. Излучение может свободно распространяться во все остальные стороны, там нет ничего, кроме космической пустоты. Так можно существенно сэкономить на весе защиты.

рис.01 Компоновка ЯЭДУ. Транспортно-энергетический модуль

Масса кг 20290
Габаритные размеры (рабочее положение), м 53,4-21,6-21,6
Электрическая мощность ЭБ, МВт 1,0
Удельный импульс ЭРД, км/с не менее 70,0
Мощность ЭРД, МВт не более 0,94
Суммарная тяга маршевых ЭРД, Н не менее 18,0
Ресурс, лет 10
Средство выделения РН «Ангара-А5»

    Назначение
  • межорбитальная буксировка полезной нагрузки
  • передача на полезную нагрузку энергии (до 225 кВт)

Главным конструктором реакторной установки и координатором работ от Росатома является НИКИЭТ — Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля.

С атомным реактором для космического применения нет принципиальных затруднений. В период с 1962 по 1993 год в нашей стране был накоплен богатый опыт производства аналогичных установок. Похожие работы велись и в США таб. 01 .

По состоянию на июль 2015 года в НИКИЭТ уже защищен технический проект активной зоны — ключевого элемента ядерного реактора. В конце года планируется защитить технический проект всей реакторной установки.

С физической точки зрения это компактный газоохлаждаемый реактор на быстрых нейтронах.

Сейчас в двух центрах — Институте реакторных материалов в городе Заречном Свердловской области и Научно-исследовательском институте атомных реакторов в Димитровграде — проходят испытания тепловыделяющих элементов (твэлов). Они разработаны в Физико-энергетическом институте им. А.И. Лейпунского (Обнинск), а изготовлены в прошлом году на Машиностроительном заводе в Электростали (ОАО «ТВЭЛ»).

Этому топливу придется работать при очень высоких температурах. В обычной ядерной топливной энергетике температуры на тысячу градусов ниже. Поэтому необходимо было выбрать такие материалы, которые смогут сдерживать негативные факторы, связанные с температурой, и в то же время позволят топливу выполнять его основную функцию — нагревать газовый теплоноситель, с помощью которого будет производиться электроэнергия.

В качестве топлива используется соединение (диоксид или карбонитрид) урана, но, поскольку конструкция должна быть очень компактной, уран имеет более высокое обогащение по изотопу 235, чем в твэлах на обычных (гражданских) атомных станциях, возможно, выше 20%. А оболочка их — монокристаллический сплав тугоплавких металлов на основе молибдена (разработка НПО «Луч» в Подольске).

Уникальность проекта в использовании специального теплоносителя — гелий-ксеноновой смеси. В установке обеспечивается высокий коэффициент полезного действия. Схема дана на рис. 02 .

рис. 02 Компоновка ядерной установки. 3D-модель РУ с карбонитридным топливом

Охлаждение газа в процессе работы ядерной установки совершенно необходимо. Как же сбрасывать тепло в открытом космосе?

На Земле для охлаждения электростанций используется либо вода, либо гигантские градирни. В космосе эти способы не доступны. Единственная возможность — охлаждение излучением. Нагретая поверхность в пустоте охлаждается, излучая электромагнитные волны в широком диапазоне, в том числе видимый свет.

Общая схема холодильника представлена на рис. 03-04 .

По состоянию на лето 2015 г. промежуточные результаты такие:

  • для экспериментального подтверждения принципа работы капельного холодильника-излучателя был проведен первый этап космического эксперимента «Капля-2» на российском сегменте Международной космической станции;
  • для теплообменных аппаратов выбрана, экспериментально обоснована и изготовлена моноблочная бескорпусная конструкция с использованием теплообменной матрицы из унифицированных штампованных пластин.

Рис. 03 Параметры холодильника ЯЭДУ

    Вариант компоновки ЯЭДУ в составе многоразового межорбитального буксира:
  • с панельным холодильником-излучателем
  • с капельным холодильником излучателем

Рис. 04

    Варианты размещения ЯЭДУ под обтекателем в транспортном положении:
  • с панельным холодильником-излучателем
  • с капельным холодильником излучателем

В 2010 году были сформулированы технические предложения по проекту. С этого года началось проектирование.

Известно, что с начала 1960-х годов в мире было разработано несколько типов электрореактивных двигателей: ионный, стационарный плазменный, двигатель с анодным слоем, импульсный плазменный двигатель, магнитоплазменный, магнитоплазмодинамический.

Исследовательский центр имени М.В. Келдыша (ранее РНИИ, НИИ-1, НИИТП) разработал и изготовил опытный образец ионного двигателя высокой мощности ИД-500. Его параметры такие: мощность 32-35 кВт, тяга 375-750 мН, удельный импульс 70000м/с, коэффициент полезного действия 0,75.

На данном этапе опытный образец ИД-500 имеет электроды ионно-оптической системы, выполненные из титана с диаметром перфорированной отверстиями зоны 500 мм, катод газоразрядной камеры, который обеспечивает ток разряда в диапазоне 20-70 А и катод-нейтрализатор, способный обеспечить нейтрализацию ионного пучка в диапазоне токов 2-9 А. На следующем этапе разработки двигатель будет оснащен электродами из углерод-углеродного композиционного материала и катодом с графитовым поджигным электродом.

Принцип действия ионного двигателя следующий. В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из нее эмиссионным электродом «вытягиваются» ионы рабочего тела (ксенона или другого вещества) и ускоряются в промежутке между ним и ускоряющим электродом.

По планам, к концу 2017 года будет осуществлена подготовка ядерной энергодвигательной установки для комплектации транспортно-энергетического модуля (перелетного межпланетного модуля). К концу 2018 года ЯЭДУ будет подготовлена к летно-конструкторским испытаниям. Финансирование проекта осуществляется за счет средств федерального бюджета. Смета на период 2010-2018 гг. составляет 7245 млн руб.

Проект создания транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса вызвал нешуточные научно-технологические дискуссии в среде двух выликих кланов — атомного и космического. Но пока живы «проигравшие», подробности решено не выносить на публику.

Таб. 01 Сравнительные показатели результатов, полученных по программам разработок ядерных реактивных двигателей в СССР и в США в 1959-1989 гг.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector