Высокий ток двигателя причины
Основными причинами увеличения тока холостого хода являются
асинхронных двигателей при недопустимо высоком значении тока холостого хода
Настоящая инструкция распространяется на 3-х фазные электрические машины мощностью до 400 кВт и рабочим напряжением до 660В.
В инструкции рассмотрены причины вызывающие увеличение тока холостого хода. Даны указания по испытаниям двигателей на холостом ходу и порядок пересчёта обмоточных данных с использованием результатов испытаний, обеспечивающих снижение тока холостого хода до необходимой величины. Даны рекомендуемые значения токов холостого хода.
Основными причинами увеличения тока холостого хода являются:
- чрезмерное «распушение» сердечника статора;
- неправильная сборка двигателя (ротор развернут относительно статора);
- слишком большой зазор между ротором и статором (ротор проточен или от другого двигателя);
- листы сердечника статора замыкают между собой (результат задевания ротора за статор);
- нарушение изоляции между листами сердечника статора;
- статор намотан неправильно (уменьшено количество витков в пазу, увеличено количество параллельных ветвей в фазе, уменьшен шаг и т. д.)
Будем считать, что сердечник статора не имеет затиров, обмотка статора уложена и соединена правильно, двигатель собран правильно, и тем не менее ток холостого хода превышает предельно допустимое значение. В подавляющем большинстве случаев причиной является разрушение изоляции между листами сердечника статора во время отжига двигателей в печи перед демонтажем обмотки.
Все отечественные двигатели начиная с 1992 года и двигатели иностранных фирм с 1985 года изготавливаются из электротехнической стали с лаковым покрытием, которое частично разрушается во время отжига при температуре 380 градусов (раньше изоляцией служила оксидная плёнка). Это приводит к увеличению потерь в сердечнике статора, его нагреву, и как следствие увеличению тока холостого хода.
На рисунке 1 показаны кривые намагничивания сердечника статора с хорошей изоляцией (кривая 1) и с нарушенной изоляцией (кривая 2) листов. В определенном масштабе так же изменяется I хх двигателя от приложенного напряжения.
На рисунке видно, что при напряжении 380 В. ток холостого хода при хорошем сердечнике значительно ниже чем с сердечником с нарушенной изоляцией. Для наглядности возьмём конкретный двигатель:
АИР 180S-4, 22 кВт. 380 В. 43 А. 1460 об/мин., имеющего следующие обмоточные данные:
- тип обмотки — двухслойная
- шаг по пазам — 1-11
- диаметр провода — 1,6 мм.
- проводов в витке — 2
- витков в пазу 23
- параллельных ветвей в фазе — 2
- сопряжение фаз — звезда
При испытании на холостом ходу при 380 В. потребляемый ток составил 27А., что превышает предельно допустимую норму, равную 12 А. В этом случае необходимо снизить напряжение, подаваемое на двигатель, до величины при которой потребляемый ток уменьшится до предельно допустимой нормы, в нашем случае до 12 А. Тем самым по кривой 2 из точки 2 мы перешли в точку 3 (рис.1). Напряжение при этом в нашем случае будет U2 = 330 В.
Теперь необходимо изменить обмоточные данные двигателя так, чтобы потребляемый ток 12А. был при напряжении 380 В. Для этого количество витков в пазу надо увеличить по формуле:
Диагностика неисправности
Основным признаком возникновения межвиткового замыкания является неравномерный нагрев корпуса. Это происходит по причине повышенного потребления тока одной (неисправной) обмотки. Если возник перегрев одной части корпуса, то двигатель необходимо обесточить и выполнить диагностику.
Ее выполняют следующим образом:
- Проверяют напряжение на всех обмотках. Оно должно быть одинаково, т.е. в сети должен отсутствовать перекос фаз. После этого замеряют токи в каждой обмотке. Замеры производят токовыми клещами. Если ток в одной обмотке отличается от остальных в большую сторону, то это говорит о наличии неисправности в данной обмотке.
- С помощью высокоточного омметра замеряют сопротивление обмоток. Значения должны быть одинаковыми. Обычным прибором проверить наличие замыкания невозможно. Т.к. при коротком замыкании всего двух витков, сопротивление изменится незначительно.
- Замыкание на корпус определяют с помощью мегомметра. Для этого один конец соединяют с корпусом, а второй подсоединяют к обмоткам поочередно. Таким образом, проверяют целостность сопротивления изоляции. В идеале оно должно быть одинаково на каждой обмотке или иметь незначительные отклонения. При этом следует учитывать, что оно меняется в зависимости от температуры проводников.
На нижеприведенном рисунке представлена таблица зависимости изменения сопротивления изоляции от температуры:
Как определить потребляемый ток электродвигателя
Зная мощность, легко можно высчитать величину потребляемого тока. Для 3 фазных двигателей, подключенных по схеме звезда на 380 Вольт, необходимо умножить мощность в киловаттах на 2. Например, при мощности 5 киловатт ток будет равен 10 Ампер. Опять же учитывайте, что такой ток мотор будет брать только под нагрузкой максимально близкой к номиналу. Полунагруженный электродвигатель и тем более на холостом ходу будет потреблять значительно меньший ток.
Для определения тока в однофазных сетях, необходимо мощность разделить на напряжение. Например, при работе двигателя напряжение в месте его подключения равно 230 Вольт. Это важно так, как после включения нагрузки напряжение скорее всего понизится в месте подключения электродвигателя.
Если например, мощность мотора на 220 Вольт по измерениям оказалась равной 1.5 кВт или 1500 Ватт. Делим 1500 на 230 Вольт и получаем, что рабочий ток двигателя приблизительно равен 6.5 Ампер.
Причины перекоса фаз в трехфазной сети
Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.
Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.
Перекос фаз, вызванный обрывом нейтрали
В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.
К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.
Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:
- Неравномерная нагрузка на линии трехфазной сети.
- При обрыве нейтрали.
- При КЗ одного из фазных проводов на землю.
Какие электромоторы можно проверить мультиметром?
Существуют разные модификации электрических двигателей, и перечень их возможных неисправностей достаточно велик. Большинство неполадок можно диагностировать, воспользовавшись обычным мультиметром, даже если вы не специалист в этой области.
Современные электродвигатели разделяются на несколько видов, которые перечислены ниже:
- Асинхронный, на три фазы, с короткозамкнутым ротором. Этот тип электрических силовых агрегатов является самым популярным благодаря простому устройству, которое обеспечивает легкую диагностику.
- Асинхронный конденсаторный, с одной или двумя фазами и короткозамкнутым ротором. Такой силовой установкой обычно оснащается бытовая техника, запитывающаяся от обычной сети на 220В, наиболее распространенной в современных домах.
- Асинхронный, оснащенный фазным ротором. Это оборудование имеет более мощный стартовый момент, чем моторы с короткозамкнутым ротором, в связи с чем его используют как привод в крупных силовых устройствах (подъемники, краны, электростанки).
- Коллекторный, постоянного тока. Такие двигатели широко используются в автомобилях, где они играют роль привода вентиляторов и насосов, а также стеклоподъемников и дворников.
- Коллекторный, переменного тока. Этими моторами оснащается ручной электроинструмент.
Первый этап любой диагностики – визуальный осмотр. Если даже невооруженным взглядом видны сгоревшие обмотки или отломанные части мотора, понятно, что дальнейшая проверка бессмысленна, и агрегат нужно везти в мастерскую. Но зачастую осмотра недостаточно, чтобы выявить неполадки, и тогда необходима более тщательная проверка.
Прозвонка асинхронного двигателя
Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:
Произвести замеры сопротивления между выводами двигателя.
Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата.- Провести диагностику утечки тока на «массу».
Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.
Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований. Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание.
При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.
Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.
Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.
Неисправности асинхронного двигателя
Существует несколько причин неисправностей и их диагностика для асинхронного двигателя, которые объединены в таблицу:
Как заменить щетки в стиральной машине
Прежде чем приступить к замене щеток, стоит просмотреть видео.
Даже надежной и долговечной стиральной машине Ардо, требуется регулярный осмотр, и замена износившихся деталей. После 5 лет работы, возможно, потребуется замена щеток мотора, которые могут потерять полноценный контакт.
При обнаружении неисправности электродвигателя стиральной машинки марки Ардо 1000, связанной с заменой щеток двигателя, необходимо приобрести такой набор инструментов и приспособлений:
- Новые щетки.
- Мультиметр.
- Отвертки.
- Обычный пылесос.
Инструкция по замене щеток двигателя:
- Обесточивается стиральная машина;
- Освобождается место возле задней стенки агрегата, для удобства проведения работ;
- Снимается задняя стенка, после откручивания удерживающих ее винтов;
Чтобы определить размещение электромотора в стиральной машине, необходимо найти шкив барабана, а затем двигатель и приводной ремень, который соединяет их. Ремень снимается после поддевания его отверткой и прокруткой шкива.
- Перед вытаскиванием двигателя из машины, от него отключается разъем электропитания, откручиваются винты;
- Мотор снимается;
- Протирается или пылесосится двигатель, который может покрываться графитовой пылью, мешающей дальнейшим процедурам;
- Двигатель тестируется на наличие утечек и замыканий на корпус. Делать это удобнее всего с помощью мультиметра;
- Снимается питание с контактов держателей щеток, надавив на них;
- Контакты вытаскиваются из корпуса двигателя;
- Износ щетки определяется по размеру графического участка: если его величина меньше 5 мм, замену следует делать обязательно;
- Новая щетка притирается к коллектору, установкой на него наждачной бумаги и прокрутив несколько оборотов;
- Такая же процедура повторяется со второй щеткой;
- Двигатель еще раз пылесосится;
- Мотор полностью собирается и устанавливается в стиральную машину Ардо;
На этом этапе приводной ремень не нужен. Просто машина запускается в режиме стирки. Это необходимо сделать, чтобы щетки хорошо притерлись к коллектору двигателя.
- Приводной ремень надевается на шкив двигателя, а после этого на шкив барабана;
- Стиральная машина полностью собирается;
- Устанавливается и закрепляется задняя стенка.
Таким же способом устраняются и неисправности электродвигателей стиральных машин tl.
Обрыв и замыкание статорных и роторных обмоток
При уменьшении мощности двигателя, возможно, произошло короткое замыкание, между витками обмотки. При этом барабан машины может перестать вращаться или вращаться медленно.
При остановке двигателя, скорее всего, был обрыв в обмотках статора. Это может произойти при слишком сильном нагреве корпуса мотора, причиной которого является короткое замыкание в обмотках движка. При нагревании двигателя до температуры выше 90ºС, срабатывает специальный защитный термостат.
Совет: Оптимальная температура для работы электродвигателя не должна превышать 80ºС.
Для проверки наличия обрыва в обмотках, можно использовать тестер в режиме омметра, подсоединенного к соседним ламелям. В разных положениях вала между ламелями сопротивление, рядом расположенных элементов, должно быть одинаковым — от 0,1 до 0,4 Ом.
Короткое замыкание в обмотке двигателя может появиться при нарушении изоляции. В этом случае понадобится менять весь двигатель, или снова создавать обмотку, но это очень сложно. Замыкание в двигателе может быть причиной и других неисправностей.