1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вентиляторный двигатель принцип работы

Основные технические особенности вентильных двигателей

Для решения задач контролируемого движения в современных прецизионных системах все чаще применяются вентильные (бесколлекторные) двигатели. Такая тенденция обусловлена преимуществами вентильных двигателей и бурным развитием вычислительных возможностей микроэлектроники. Как известно, вентильные (синхронные) двигатели обеспечивают наиболее высокие плотность длительного момента (момент в единице объема) и энергетическую эффективность по сравнению с любым другим типом двигателя.

Современный вентильный привод объединяет электрическую, механическую и электронную подсистемы в единое цельное мехатронное устройство. В рамках такого подхода удается значительно сократить габариты, избавиться от лишних преобразователей и промежуточных элементов, а значит, повысить надежность всего привода в целом.

В рамках данной статьи рассматривается принцип работы и устройство современных вентильных машин, описываются принципы управления вентильным преобразователем для коммутации с применением датчиков положения ротора, а также перечисляются особенности интегрированного исполнения вентильных двигателей.

Устройство

А теперь самое время перейти к турбовентиляторному реактивному двигателю, который как раз и является одним из видов ТРДД со степенью двухконтурности больше 2-х. ТВРД, как двухконтурный двигатель, состоит из первого контура – обычного ТРД, и второго. Первый контур включает в себя вентилятор, компрессор высокого давления, камеру сгорания, турбину высокого давления, турбину низкого давления и сопло. Второй контур представляет собой кольцевой канал с неподвижными лопатками внутри и соплом.

Компрессор высокого давления (КВД), как правило, осевой и состоит из нескольких ступеней, каждую из которых формируют подвижные и неподвижные лопатки, закрепленные на валу. Чем больше ступеней, тем выше степень сжатия воздуха. Подвижные лопатки расположены впереди, они засасывают и сжимают воздушный поток, который потом попадает на неподвижные лопасти, задающие ему осевое направление.

Вентилятор – это своего рода тот же компрессор, его даже порой называют компрессором низкого давления и считают одной из ступеней КВД. Обычно он одноступенчатый, чего вполне достаточно для предварительно сжатия воздуха, но в некоторых случаях встречаются и двух- и трехступенчатые вентиляторы.

Камера сгорания может быть кольцевой или трубчатой. Ее поверхность имеет отверстия для лучшего вентилирования и охлаждения. В самой камере установлены форсунки для подачи топлива.

Турбина высокого давления – это основа мотора. Собственно, это тот же компрессор, только с обратным принципом работы: в случае с турбиной не она воздействует на газовый поток, а поток воздействует на нее, отдавая часть своей энергии. Ее конструкция состоит из неподвижных лопаток, выпрямляющих поток расширенных газов, и подвижных лопаток, которые и создают крутящий момент. Как и компрессор, она может иметь несколько ступеней.

Турбина низкого давления – это свободная турбина, вращающая вентилятор. Она тоже вращается под воздействием расширенных газов Две турбины не связаны между собой механически и работают независимо одна от другой. Вал второй турбины при этом обычно находится внутри вала первой, но есть конструкции, предусматривающие наличие трех валов.

Классификация

По типу питания вентильные электрические машины подразделяются на электродвигатели постоянного и переменного тока.

По способу взаимодействия магнитного поля статора и ротора встречаются синхронные, асинхронные и индукторные аппараты.

Помимо этого, в зависимости от числа задействованных фаз они разделяются на:

  • Однофазные – представляю собой наиболее простой вариант, где используется минимум линий передачи питающего напряжения от блока управления к его обмоткам. Однако в некоторых позиция существует трудность пуска такого вентильного двигателя под нагрузкой.
  • Двухфазные – обладают хорошей связью между обмоткой и статором. Но выдают довольно сильные пульсации, которые могут привести к негативным последствиям в работе.
  • Трехфазные – наиболее распространенные варианты, способные выдать плавный пуск и нормальный режим работы вентильного двигателя. Характеризуется четным количеством обмоток и хорошими тяговыми характеристиками. К его недостаткам относят лишь чрезмерный шум во время работы.
  • Четырехфазные – характеризуются минимальными пульсациями низким пусковым моментом. Но, в сравнении с другими моделями, они имеют высокую себестоимость, из-за чего применяются редко.
Читать еще:  Что значить контрактные двигателя

Рис. 7. Четырехфазный вентильный двигатель

Технология GreenTech

Сердце GreenTech бьется в энергосберегающей электронно-коммутируемой технологии ebm-papst (GreenTech ЕС technology). Чем меньше расходуется энергии, тем ниже затраты на электричество. Но это — только начало, электронно-коммутируемая GreenTech технология (GreenTech ЕС technology) означает также, что двигателями и вентиляторами можно управлять, они отрегулированы таким образом, что всегда соответствуют необходимым эксплуатационным требованиям. И это имеет огромное значение, поскольку нет ничего более экономичного, чем, к примеру, изделие, которое имеет функцию самоотключения, когда в этом есть необходимость.

Следующее преимущество электроники – бесщёточное коммутирование. Это позволяет электронно-коммутируемым GreenTech двигателям и вентиляторам работать абсолютно без износа, практически бесшумно, не теряя в производительности и имея более долгий срок службы.

Таким образом, благодаря технологии GreenTech день за днем уменьшаются расходы на электроэнергию, и в то же самое время, длительный срок службы позволяет снижать издержки на материалы и обслуживание.

Инновационная технология электродвигателей

Наши двигатели с внешним ротором давно известны среди специалистов – тихие, мощные и постоянно совершенствуемые, они сделали нас лидером мирового рынка. Благодаря замечательному интеграционному потенциалу они идеально подходят для самых разнообразных сфер применения. Дополнив эти решения электродвигателями с внутренним ротором для динамичных сфер применения и особо агрессивных химических сред, мы смогли получить самую широкую номенклатуру вентиляторов и двигателей в мире.

Интеллектуальная электроника

— «мозг» любого современного системного решения. Использование электроники в качестве управляющего элемента позволяет получить идеальное сочетание приводных систем и аэродинамики, идеально приспосабливая каждое решение к конкретной области применения – с ручным управлением или в составе автоматической системы. В результате получается высококачественная конечная продукция из единого источника для любой области: от узкоспециализированных систем охлаждения электроники до энергосберегающих отопительных комплексов.

Аэродинамика, которая «думает» вместе с вами

Оптимальная форма имеет важное значение, для осевых вентиляторов, центробежных вентиляторов в корпусе и без корпуса, компактных и тангенциальных вентиляторов. Поэтому мы всегда проектируем лопасти, крыльчатки и канальные корпуса вентиляторов с учетом особенностей конкретного применения в определенной среде. Только так нам удается достичь максимально возможной эффективности при минимально возможном уровне шума. Для этого мы в совершенстве изучили аэродинамику.

Принцип работы

ЕС-двигателя основан на том, что в поле, создаваемом встроенными в ротор постоянными магнитами, осуществляется управление вектором магнитного поля путем изменения направления тока в обмотке статора. В каждый момент времени контроллер вычисляет и подает на обмотку статора полярность тока, которая необходима для того, чтобы обеспечить непрерывное вращение ротора с заданной скоростью.

EC-двигатели возможно подключать к постоянному источнику напряжения согласно параметрам или через встроенный коммутационный модуль непосредственно к сети переменного тока (220 В, 380 В). С использованием стандартного приборного интерфейса RS 485 или специальной шины ebm BUS обеспечена возможность управления вентилятором (либо группой вентиляторов до 31 шт. в каждой) при помощи ПК или КПК. Количество групп вентиляторов в интегрированной системе управления может достигать 256. Возможно также использование технологии Bluetooth. Предусмотрена выдача тревожных и аварийных сигналов, а также обеспечение мониторинга работы системы.

Читать еще:  Во сколько обойдется ремонт двигателя мерседес

Битвы за тишину

General Electric расконсервировала испытательные стенды, на которых тестировались GE-36. К делу вновь подключилась NASA (обеспечивая 50% финансирования), и было объявлено о том, что новый прототип двигателя с открытым вентилятором (по мотивам GE-36) пройдет испытания в аэродинамической трубе. В проекте (а конкретно в разработке лопастей биротационного винта) принимает участие французская промышленная группа SAFRAN в лице двигателе-строительного подразделения Snecma). GE и SAFRAN давно сотрудничают в рамках совместного предприятия CFM. Кстати, сообщалось и о том, что Snecma привлекала в качестве партнера по разработке перспективных двигателей для гражданской авиации российских ученых из Центрального института авиационного моторостроения имени П.И. Баранова (ЦИАМ).

О собственном проекте винтовентиляторного двигателя с открытым биротативным вентилятором (open rotor) объявила и корпорация Rolls Royce.

Можно было бы с уверенностью говорить о возрождении винтовой авиации, если бы не одно «но»: за прошедшие десятилетия требования к уровню шума для гражданских авиадвигателей только ужесточились. Смогут ли винтовентиляторные двигатели вписаться в эти жесткие стандарты?

И представители партнерства NASA-GE-SAFRAN, и конкуренты из Rolls Royce в один голос заявляют, что оптимизация шумовых характеристик новых двигателей для них первостепенная задача. Технологические тонкости этих изысканий пока публике не предъявлены, но общее направление более-менее ясно. Шум винта находится в прямой зависимости от скорости вращения пропеллера, а также длины и ширины лопастей. Значит, лопасти следует сделать короче и тоньше. При высокой эффективности биротативного винта с большим количеством саблевидных лопастей он может обеспечивать достаточную тягу, имея меньшую скорость вращения. Применение редуктора позволит лопастям не раскручиваться до сверхзвуковых скоростей, что значительно уменьшит шум.

Конечно, неверно было бы сказать, что гранды мирового авиапрома связывают будущее авиации исключительно с винтовентиляторными двигателями. Существуют и альтернативные конструкции, также направленные на повышение топливной эффективности при снижении шумовых характеристик. Корпорация Pratt&Whitney, в 1980-х конкурировавшая с GE в области двигателей с открытым толкающим ротором, сегодня двигает на рынок несколько иной перспективный продукт. Он называется PurePower PW1000G и по сути является турбовентиляторным двигателем классической схемы, где вентилятор заключен в кольцевом обтекателе. При этом с целью повышения степени двухконтурности диаметр вентилятора существенно увеличен. Но, как известно, при увеличении длины лопаток вентилятора растет линейная скорость на их концах, что делает двигатель слишком шумным. Решить эту проблему за счет снижения скорости вращения вала турбины низкого давления (именно он вращает вентилятор) нельзя, так как это скажется на термоэффективности двигателя и приведет к снижению КПД. Выход был найден в планетарном редукторе, поставленном между валом турбины и вентилятором. В итоге вентилятор вращается медленнее и по уровню шума вписывается в современный стандарт (20 дБ).

Еще одна из существующих концепций повышения степени двухконтурности двигателя предусматривает установку внутри кольцевого обтекателя аналога биротативного пропеллера.

Победит ли какая-то из ныне конкурирующих конструкций или им уготовано мирное сосуществование — очевидно, что в основе их всегда будет оставаться компромисс между топливоэффективностью и уровнем шума. А цены на нефть, как всегда, сыграют здесь не последнюю роль.

Вентильные двигатели постоянного тока

Все двигатели постоянного тока можно назвать бесколлекторными. Они работают от сети с постоянным током. Щеточный узел предусмотрен для электрического объединения цепей ротора и статора. Такая деталь является самой уязвимой и достаточно сложной в обслуживании и ремонте.

Читать еще:  Subaru impreza wrx sti двигатель характеристики

Вентильный двигатель постоянного тока работает по тому же принципу, что и все синхронные устройства такого типа. Он представляет собой замкнутую систему, включающую силовой полупроводниковый преобразователь, датчик положения ротора и координатор.

Преимущества EC-двигателей.

Компактность, низкое энергопотребление, плавное и точное регулирование, низкий уровень шума, отсутствие вибрации, согласованность с рабочим колесом по аэродинамике и мощности, а также ряд других излагаемых ниже особенностей ЕС-двигателей являются причиной все более возрастающего интереса к ним.
Преимущество в габаритах обусловлено тем, что ЕС-двигатели, являясь более компактными по сравнению с AC-двигателями, полностью вписываются в габариты крыльчатки вентилятора, обеспечивая прямой привод, в то время как вентиляторы с AC-двигателями занимают значительно больше места, особенно в направлении потока воздуха, что означает необходимость наличия несколько увеличенных размеров венткамеры. Размер выходного отверстия EC-вентилятора практически совпадает с поперечными размерами секции, в которой он размещается. Это приводит, с одной стороны, за счет предварительно выровненного потока воздуха к более эффективному использованию поверхности теплообменника, устанавливаемого за вентилятором, и улучшению съема с него тепла/холода, а с другой стороны, снижает скорость прохождения воздуха внутри секции вентилятора, уменьшает потери давления и шумность. Преимущества в сравнении с AC-двигателем, имеющим ременной привод, схематично показаны на рис. 3.

Рис. 3. Преимущества EC-вентилятора

У ЕС-вентиляторов практически отсутствуют пиковые пусковые токовые нагрузки за счет того, что встроенный регулятор обеспечивает плавное нарастание амплитуды переменного тока от нуля до номинального значения. Пусковой ток у АС-вентиляторов в 5–7 раза превышает номинальный, что приводит к необходимости увеличения сечения электропроводки и параметров пускового оборудования, которые выбираются в расчете на значения пускового тока.

Поскольку ротор ЕС-двигателя является внешним с постоянными магнитами, в нем отсутствуют тепловые потери, неизбежные в случае короткозамкнутого ротора асинхронного двигателя. Отсюда высокий КПД, достигающий 80–90 %. На рис. 4 приводится сравнение КПД двигателей различного типа, среди которых ЕС-двигатель характеризуется рекордными значениями в широком диапазоне полезной мощности на выходе.

Рис. 4. Сравнение КПД двигателей различного типа

Наряду с высоким КПД, высокая степень энергосбережения при использовании EC-двигателей в системах ОВК достигается за счет регулирования числа оборотов. В силу кубической зависимости потребляемой мощности от числа оборотов их плавное и глубокое регулирование, обеспечиваемое EC-двигателями без преобразования частоты питающего напряжения, дает значительный эффект в части снижения суммарных значений потребляемой мощности, иллюстрируемое на рис. 5 путем сравнения EC-двигателей с AC двигателями, использующими фазовое, амплитудное и частотное регулирование.

Рис. 5. Соотношение расхода и потребляемой мощности вентиляторов различного типа

С эксплуатационной точки зрения преимущества ЕС-двигателей обусловлены тем, что вращающиеся части исполнены как один динамически и статически сбалансированный компонент, общий вес которого равномерно распределен на оба опорных подшипника, что значительно влияет на срок службы изделия. И как следствие, минимальная вибрация и шум при работе ЕС-двигателя.

На рис. 6 представлены значения потребляемой мощности EC-двигателями, опционально поставляемыми в составе прецизионных кондиционеров холодопроизводительностью 35, 42, 60, 70 и 75 кВт в сравнении со стандартно используемыми асинхронными двигателями переменного тока (AC-двигателями).

Рис. 6. Сравнительная оценка потребляемой мощности EC- и AC-двигателями.
Очевидно, что при дополнительной стоимости EC- двигателя 100–200 долларов, капитальные затраты окупаются очень быстро.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector