2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговые двигатели как найти начало обмотки

Блок Stepper Motor представляет шаговый двигатель. Это использует входные последовательности импульсов, A и B, чтобы управлять механическим выходом согласно следующим уравнениям:

e A = − K m ω sin ( N r θ )

e B = K m ω cos ( N r θ )

d i A d t = ( v A − R i A − e A ) / L

d i B d t = ( v B − R i B − e B ) / L

J d ω d t + B ω = T e

T e = − K m ( i A − e A R m ) sin ( N r θ ) + K m ( i B − e B R m ) cos ( N r θ ) − T d sin ( 4 N r θ )

eA и eB являются противоэлектродвижущими силами (эдс), вызванные в обмотках фазы A и B, соответственно.

iA и iB являются фазой A и B извилистые токи.

vA и vB являются фазой A и B извилистые напряжения.

Km является постоянным крутящим моментом двигателя.

Nr является количеством зубов на каждом из двух полюсов ротора. Параметр Full step size (π/2) /Nr .

R является сопротивлением обмотки.

L является извилистой индуктивностью.

Rm является сопротивлением намагничивания.

B является вращательным затуханием.

J является инерцией.

ω является скоростью ротора.

Θ является углом ротора.

Td является амплитудой крутящего момента стопора.

Te является электрическим крутящим моментом.

Если начальный ротор является нулем или некоторым кратным (π/2) /Nr , ротор выравнивается с обмоткой фазы импульса A. Это происходит, когда существует положительное текущее течение из A+ к портам A- и нет никакого текущего течения из B+ к портам B-.

Используйте блок Stepper Motor Driver , чтобы создать последовательности импульсов для блока Stepper Motor .

Блок Stepper Motor производит положительный крутящий момент, действующий от механического C до портов R, когда фаза импульса A приводит фазу импульса B.

Усредненный режим

Если вы устанавливаете параметр Simulation mode на Averaged , и для блока Stepper Motor и для блока Stepper Motor Driver , который управляет им, затем не симулированы отдельные шаги. Это может быть хорошим способом ускорить симуляцию. В режиме Averaged, при неуменьшающихся условиях, двигатель и драйвер представлены линейной системой второго порядка, которая отслеживает заданный уровень шага. Потребованный уровень шага определяется непосредственно из напряжения через A+ и A-. Так, например, напряжение +10 В через A+ и терминалы A- интерпретировано как спрос на уровень шага 10 шагов в секунду. Смотрите страницу с описанием блока Stepper Motor Driver для получения дополнительной информации о том, как соединить блок драйверов с вашим угловым контроллером шага.

Усредненный режим включает средство оценки промаха, чтобы предсказать, уменьшился ли шаговый двигатель при выполнении в Шаговом режиме симуляции. Промах предсказан, если крутящий момент двигателя превышает значение параметров Vector of maximum torque values для дольше, чем один период шага, период шага, определяемый из текущего спроса на уровень шага. После обнаружения промаха симуляция продолжит или остановится с ошибкой, согласно значению параметров Action on slipping. Если вы выбираете действие, которое позволяет симуляции продолжить, отметить, что результаты симуляции могут быть неправильными. Когда скольжение происходит, крутящий момент, сгенерированный двигателем, обычно не является максимальным доступным крутящим моментом; максимальный крутящий момент только достигается, если контроллер степпера обнаруживает промах и настраивает команду уровня шага соответственно.

Движущие силы эквивалентной системы второго порядка убеждены из значений, что вы задаете для параметров Maximum step rate command и Approximate total load inertia. Важно, чтобы вы установили максимально точные значения для этих параметров, так, чтобы команда уровня шага была прослежена, и блок не генерирует ложные предупреждения скольжения или ошибки.

Если при запуске двигатель в режиме Averaged с дополнительными тепловыми осушенными портами (см. Тепловые Порты и Эффекты), то нагрейтесь, добавляется к тепловым портам, принимая, что обмотки всегда приводятся в действие, даже когда команда уровня шага является нулем. Блок вносит изменения для того, чтобы наполовину продвинуться и для уменьшаемого крутящего момента (и проветрить токи) на более высоких скоростях. Для этих корректировок, чтобы быть правильными, значения параметров Vector of maximum torque должны быть правильными. Для того, чтобы наполовину продвинуться, на нулевой скорости тепло, выработанное блоком, является средним значением сгенерированного, когда остановлено на половине шага и на полном шаге.

Читать еще:  Что происходит когда заводим двигатель

Чтобы подтвердить настройки модели режима Averaged, где вы предсказываете промах, чтобы произойти, сравните результаты с той же симуляцией, выполняемой в шаговом режиме.

Тепловые порты и эффекты

Блок имеет три дополнительных тепловых порта, один для каждой из этих двух обмоток и один для ротора. Эти порты скрыты по умолчанию. Чтобы осушить тепловые порты, щелкните правой кнопкой по блоку по своей модели, и затем из контекстного меню выбирают Simscape> Block choices> Show thermal port. Это действие отображает тепловые порты на значке блока и добавляет Temperature Dependence, и Thermal Port переходит в диалоговое окно блока. Эти вкладки описаны далее на этой странице с описанием.

Используйте тепловые порты, чтобы симулировать эффекты медного сопротивления и потерь в железе, которые преобразовывают электроэнергию в теплоту. Если вы осушаете эти порты, сопротивление обмотки принято линейно зависимое на температуре и дано:

R = R0 (1 + α ( T – T0))(1)

R является сопротивлением в температурном T.

R0 является сопротивлением при измеренной (или контрольной) температуре T0. Задайте ссылочную температуру с помощью параметра Measurement temperature.

α коэффициент температуры сопротивления, который вы задаете параметром Resistance temperature coefficients, [alpha_A alpha_B]. Типичное значение для меди является 0.00393/K.

Блок вычисляет температуру каждой из обмоток и ротора

M является количеством тепла. Задайте это значение для обмоток с помощью параметра Winding thermal masses, [M_A M_B], и для ротора с помощью параметра Rotor thermal mass.

T является температурой. Задайте начальные значения для обмоток с помощью параметра Winding initial temperatures, [T_A T_B], и для ротора с помощью параметра Rotor initial temperature.

Q является тепловым потоком, который вычисляется от потерь в железе обмоток:

Q A = i a 2 R A ( 1 − ρ m / 100 ) Q B = i B 2 R B ( 1 − ρ m / 100 ) Q R = Q A ( ρ m / 100 ) + Q B ( ρ m / 100 )

где ρm является процентом намагничивания сопротивления, сопоставленного с ротором. Задайте этот процент с помощью параметра Percentage of magnetizing resistance associated with the rotor.

Предопределенная параметризация

Существует несколько доступной встроенной параметризации для блока Stepper Motor .

Эти данные перед параметризацией позволяют вам настраивать блок, чтобы представлять определенный компонент поставщика. Чтобы загрузить предопределенную параметризацию, нажмите на «Выбор предопределенная параметризация» гиперссылка в маске блока Stepper Motor и выберите определенную часть, которую вы хотите загрузить из списка доступных компонентов.

Примечание

Предопределенная параметризация компонентов Simscape использует доступные источники данных для предоставления значений параметров. Техническое решение и упрощение предположений используются, чтобы заполнить для недостающих данных. В результате отклонения между симулированным и фактическим физическим поведением должны ожидаться. Чтобы гарантировать необходимую точность, необходимо подтвердить симулированное поведение против экспериментальных данных и совершенствовать модели компонента по мере необходимости.

Как определить неисправность

На представленных фото обмотки электродвигателей видно, что нередко поломку можно заметить невооруженным взглядом: провода плавятся, чернеют, присутствует влага, запах гари, сломанные детали. В случае обнаружения неприятных признаков сомнения о необходимом ремонте отпадают, а движок отправляется в ремонтную мастерскую.

Помимо осмотра существуют и другие способы, как проверить обмотку электродвигателя, если отсутствуют внешние “симптомы”. Для этого требуется специальный прибор, который в домашних условиях можно заменить обычным мультиметром. К примеру, сообщить о проблемах с обмоткой может следующее:

Измерить сопротивление на концах намотки. Слишком большой или слишком малый результат сигнализирует об обрыве провода. На стартере трехфазного мотора сопротивление обмотки электродвигателя имеющиеся разные значения также говорят о неполадках в системе (данный показатель должен быть идентичен).

Сравнить токи на фазах двигателя под нагрузкой (если механизм исправен, то значения будут одинаковыми).

Измерить показатели на различных значениях тока на каждом участке с обмоткой, занести сведения в таблицу или представить в виде графика. Сравнить данные, которые в нормальном режиме не должны иметь сильные отклонения от единой схемы.

Читать еще:  Что такое динамичность двигателя

Частая причина неработоспособности двигателя АИР

Конечно, дефект асинхронного электромотора, полученный в результате повреждения проводников обмотки статора — ситуация сложная. Здесь, как правило, требуется обязательная перемотка обмотки статора, то есть ремонт электродвигателя, который сложно выполнить своими руками в быту.

Нерабочий мотор, по мнению пользователя, на деле может оказаться вполне работоспособным электрооборудованием. Достаточно выполнить определённый ремонт электродвигателя

В таких случаях ремонта электродвигателя, связанного с перемоткой обмоток статора, требуется не только специальное оборудование, но также опыт производства электромеханических ремонтных работ. Правда, если поставить перед собой цель, ремонт электродвигателя дома своими руками — задача вполне выполнимая.

Инструмент на разборку и тестирование

Однако здесь (в статье) речь пойдёт о распространённом, так сказать «лёгком» дефекте, который достаточно просто устраняется самостоятельным ремонтом электродвигателя с применением стандартного набора инструмента электрика:

  • отвёртка плоская,
  • отвертка четырехгранная,
  • плоскогубцы,
  • тестер электрический (стрелочный прибор),
  • молоток слесарный.

Практика эксплуатации в быту маломощных асинхронных моторов показывает: распространённой причиной прекращения работы электромоторов становится КЗ (короткое замыкание) обмотки статора на корпус.

Нередко владельцы «заболевшего» мотора долго не думают и попросту избавляются от проблемы путём закупки нового движка. Дефектный электромотор не пытаются даже исследовать должным образом, не говоря уже о попытках сделать ремонт электродвигателя.

Новый электродвигатель обязательно имеет пластиковую крышку на валу и резиновые пробки внутри пластмассовых втулок, через которые внутрь коробки заводится электрический кабель

Ремонт электродвигателя: устранить КЗ своими руками

Симптомы для ремонта КЗ на корпусе традиционны: при попытке запуска мотора срабатывает защитный автоматический выключатель. Сразу следует уточнить – если подобная ситуация имеет место, не нужно пытаться повторять пуск двигателя от раза к разу.

Повторные действия могут действительно стать причиной пробоя изоляции обмотки статора по причине высоких пусковых токов. Тогда капитального ремонта электродвигателя точно не избежать. Если сработала защита, следует обесточить цепь питания, отключить питающий кабель от БРНО (коробки с клеммами).

Клеммная коробка трёхфазного асинхронного электромотора. Питающий кабель отключают от клемм при ремонте мотора, извлекают из клеммной коробки БРНО

Прежде чем начинать выполнять ремонт электродвигателя, следует удостовериться лишний раз в наличии КЗ. Здесь поможет электрический тестер — прибор, традиционно применяемый электриками. Прежде всего, обмотки статора исследуются на целостность (отсутствие обрыва). Также выполняется проверка на межвитковое замыкание. Щупы прибора, включенного на измерение сопротивления в Омах, поочерёдно соединяют с парами клемм БРНО.

Шкала измерительного прибора должна показывать сопротивление не менее десяти Ом (как правило, 10 — 15),. Однако точная величина сопротивления зависит от характеристики конкретного экземпляра мотора. На трёхфазном моторе при отсутствии межвиткового замыкания, значения сопротивления между всеми выводами обмотки должны быть одинаковыми.

Ремонт электродвигателя — проверка целостности обмоток, а также межвиткового и короткого замыкания на корпус. Удобно пользоваться стрелочным измерительным прибором. Здесь показано соединение щупов для проверки замыкания одной части обмотки на корпус

Если тест на сопротивление обмоток статора не показал существенной разницы между показаниями при замерах и не отметился нулевыми показаниями, движок на 90-95% можно считать рабочим. Во всяком случае, ремонт электродвигателя в виде перемотки обмоток статора явно исключается.

Остаётся определить традиционно частую причину – короткое замыкание обмоток статора на корпус. В этом варианте исследований один щуп тестера соединяют с корпусом двигателя, обеспечив надёжный контакт, а вторым щупом поочерёдно трогают клеммы выводов статорных обмоток внутри БРНО.

Обычное явление КЗ – наличие показаний прибора, которых быть не должно в принципе.

Ремонт электродвигателя: какое КЗ реально устранить?

По сути, существует два вида КЗ (короткого замыкания) на корпусную часть:

  1. Прямое замыкание, с пробоем изоляции обмотки.
  2. Косвенное замыкание, по причине высокой влажности обмотки.
Читать еще:  Ваз 2131 двигатель не развивает обороты

Второй вариант как раз и заставляет производить ремонт электродвигателя чаще обычного. Измерительным стрелочным прибором (тестером, мегомметром) такое замыкание определяется появлением показаний сопротивления между корпусом и статорной обмоткой в несколько единиц или десятков кОм.

Причём показания на каждой отдельной обмотке, как правило, отмечаются разными значениями. При таком развитии событий ремонт электродвигателя проводится несложной методикой. Для исполнения ремонтных работ потребуется:

  1. Демонтировать электромотор от места установки.
  2. Отвернуть крепёж кожуха крыльчатки, снять кожух и крыльчатку.
  3. Снять крепёжные винты передней и задней корпусных крышек.
  4. Демонтировать крышки и вынуть ротор электромотора.

Оставшийся в «чистом» виде статор переносят к расположенной поблизости электрической розетке, размещают на безопасном удалении от бытовых горючих материалов. Рекомендуется приспособить в качестве подставки под статор негорючий материал (к примеру, силикатный кирпич).

Внутрь основания статора асинхронного электродвигателя (в области размещения ротора) вставляют электролампу (60-100 Вт), вкрученную в патрон с присоединённым кабелем и вилкой. Зажигают электролампу включением вилки в розетку.

Ремонт электродвигателя простыми действиями: внутрь освобождённой от ротора статорной части помещают обычную лампу накаливания и оставляют включенной, как минимум на сутки

Технология ремонта электродвигателя своими руками: выдержка статора под нагревом не менее 24 часов (иногда требуется до 48 часов). По истечении этого времени лампу накаливания отключают и заново проверяют тестером сопротивление между корпусом и выводами статорной обмотки.

В большинстве случаев, после ремонта электродвигателя таким способом, измерительный прибор уже не фиксирует наличия какой-либо проводимости. Косвенное короткое замыкание движка удаётся устранить в 90% из 100%, применив методику долговременной просушки статорной обмотки. По завершению прогрева статора электромотор мотор собирают, монтируют на рабочем месте, запускают в работу.

Видео в тему: как снять электродвигатель вентилятора на ремонт?

Видео ниже напоминает о неудобствах работы, когда вместо конус-замковой полумуфты используется старый вариант насадки шкивов (крыльчаток) на вал электродвигателя. Попутно рассматривается задача — как снять электродвигатель и крыльчатку вытяжного вентилятора:

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Советы

  • Раз в полгода-год проверяйте состояние смазки подшипников мотора. Если она на исходе, очистите вал от остатков старой смазки и добавьте новую. Не используйте индустриальное масло – оно быстро высыхает при 50-80 градусах.
  • Не перегружайте машину, «гоняя» её на пределе. Если модель предусматривает 7 кг белья, нагрузите на 5-6 кг.
  • Снизьте обороты во время отжима, особенно когда белья много (околопредельный вес). Вместо 1000 оборотов в минуту лучше использовать 400-600.
  • Лёгкие вещи требуют освежающей стирки – один основной цикл, одно полоскание, один отжим. Не затягивайте стирку на 3 часа, когда загрязнения белья невелики. Если есть сушилка и утюг, можно не пользоваться режимом сушки и лёгкой глажки.
  • Зафиксируйте машину, установив её в небольшое углубление, на сантиметр «утопив» ножки в пол. На высоких оборотах она не сдвинется с места.
  • Не подвешивайте СМА на кронштейнах над полом, даже если стена выполнена из железобетона. Поймав резонанс при тряске во время отжима белья, можно и дом завалить.
  • Если питающее напряжение в вашей сети часто меняется, используйте высокомощный стабилизатор или ИБП, выдающий стабильные 220 вольт.
  • При проверке двигателя на работоспособность включайте его последовательно через ТЭН машины – неисправные обмотки будут сохранены, так как в случае их малого сопротивления, замыканий спираль ТЭНа будет быстро нагреваться.
  • В проводке (линии) розетки, в которую включается СМА, должен задействоваться дополнительный дифавтомат.

Стиральная машина, как и всякий прибор, нуждается в бережном обращении и своевременном уходе. Тогда она без особых проблем проработает лет 10-20.

О том, как проверить двигатель стиральной машины, смотрите далее.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты