Kfw двигатель что может быть
TSI двигатель что это такое
Появление немецких автомобилей с новой линейкой двигателей ТSI, или, чуть раньше ТFSI, зачастую является предметов споров, основным вопросом которых является именно двигатель.
Что это такое – двигатель ТSI и какие нововведения применены в его конструкции и расскажем ниже, не забыв упомянуть и о проблемах, связанных с эксплуатацией двигателей ТSI.
Надежность, проблемы и ремонт двигателей 2.0 TSI (3 gen.)
В 2012 году начали выпускать третье поколение моторов VW 2.0 TSI, которые пришли на смену 2-й версии ЕА888 (CAE, CDN и CCZ). Инженеры продолжили развивать эту серию и применили чуть более легкий закрытый блок цилиндров с тонкими стенками (3 мм вместо 3.5 мм) и с отключаемыми маслофорсунками. Внутри блока установлен коленвал с шейками 52 мм и с 8-ю противовесами, новые шатуны и измененные поршни. Также здесь применены 2 облегченных балансирных вала и новой конструкции маслонасос.
Накрыли блок новой головкой с системой изменения фаз газораспределения на впускном и выпускном распредвалах. Выпускной распредвал также оснащается двухступенчатой системой регулирования высоты подъема клапана AVS, которая переключается при 3100 об/мин.
Распредвалы вращаются с помощью старой цепи ГРМ от gen.2, но с другим натяжителем. Эта цепь рассчитана на весь срок эксплуатации автомобиля (как говорят в VW), но в обычных условиях это не так.
Как и во многих современных моторах, здесь выпускной коллектор встроен в головку. Также для 3-го поколения ЕА888 применили прямой впрыск топлива вместе с обычным распределенным.
На этом моторе была модифицирована система охлаждения и смазки. Здесь применена новая турбина IHI IS20, которая может надувать до 1.3 бар.
Эти моторы соответствуют экологическим стандартам Евро-6. Управляет всем этим ЭБУ Siemens Simos 18.1.
Двигатели ЕА888 3-го поколения с обозначением CHHB имеют 220 л.с. при 4500-6200 об/мин, крутящий момент 350 Нм при 1500-4400 об/мин. Мотор CHHA получил 230 л.с. при 4700-6200 об/мин, крутящий момент 350 Нм при 1500-4600 об/мин. Отличия между этими движками в настройках ЭБУ.
Для полноприводной Audi TT выпускали аналог на 230 л.с. под названием CHHC.
В США эти двигатели обозначаются как CXCB (220 л.с.) и CXCA (210 л.с.), встречаются они на VW Golf 7 GTI.
Также выпускается версия с маленькой турбиной Garrett MGT 1752S, которая называется CUL. В зависимости от настройки ECU различают модификации на 180 л.с. (CULA и CULB) и на 220 л.с. (CULC).
Для автомобилей Ауди с продольной установкой выпускалась серия CNC — аналог CHH. В нее входили CNCB (180 л.с.), CNCD (220 л.с.) и CNCE (230 л.с.).
Для более мощных автомобилей были созданы движки CJX, которые отличались другой отливкой головки, другим выпускным распредвалом, новыми выпускными клапанами и седлами, поршнями под степень сжатия 9.3, более мощным ТНВД, более производительными топливными форсунками высокого давления и мощными маслофорсунками. Для этих движков применяют большой интеркулер и увеличенную турбину IHI IS38, которая надувает до 1.2 бар.
Наиболее популярная модель CJXC имеет 300 л.с. при 5500-6200 об/мин, крутящий момент 380 Нм при 1800-5500 об/мин. Есть версии на 265 л.с. (CJXE), 280 л.с. (CJXA и CJXB), 286 л.с. (CJXF), 290 л.с. (CJXH) и на 310 л.с. (CJXG). Все эти моторы отличаются прошивками блока управления.
Audi S1 получил похожий мотор CWZA, но с турбиной IHI IS20 и с давлением наддува 1.4 бар. Он развивает 231 л.с. при 6000 об/мин, крутящий момент 370 Нм при 1600-3000 об/мин.
В Северной Америке Golf 7 R оснащался двигателем CYFB на 292 л.с. при 5400 об/мин, крутящий момент 380 нм при 1800 об/мин.
Там же, в Штатах, имеются VW Jetta GLI и Beetle с двигателями CPLA и CPPA, которые являются аналогами европейских CHH, но под североамериканские экологические стандарты и с маленькой турбиной Garrett MGT1752S. Между собой они отличаются насосом для подачи вторичного воздуха на моторе CPPA и его соответствии стандарту PZEV.
Этот мотор имеет 1.8-литровых собратьев CJE и CJS.
С 2016 года серия 888/3 заменяется на еще более новую ЕА888 3B.
Надежность и проблемы двигателей 2.0 TSI (3-го поколения)
Этот мотор увеличенный 1.8 TSI 3-й генерации, его проблемы такие же, как на 1.8. Здесь также изнашиваются распредвалы, растягивается цепь ГРМ, ломается термостат и прочее. Вот тут мы рассказали главное о надежности CHHB, CNCD, CHHA и прочих gen 3.
Развитие технологии VVT-i: что ещё придумали японцы?
Есть и другие разновидности этой технологии. Так, к примеру, Dual VVT-i управляет работой не только распредвала впускных клапанов, но и выпускных.
Это позволило достичь ещё более высоких параметров двигателей. Дальнейшее развитие идеи получило название VVT-iE.
Здесь уже инженеры Toyota полностью отказались от гидравлического способа управления положением распредвала, который имел ряд недостатков, ведь для поворота вала необходимо было, чтобы давление масла поднялось до определённого уровня.
Устранить данный недостаток удалось благодаря электромоторам – теперь они поворачивают валы. Вот так вот.
Спасибо за внимание, теперь вы сами можете ответить кому угодно на вопрос «VVT-i Toyota что это такое и как оно работает».
Не забывайте подписываться на наш блог и до новых встреч!
Типовые симптомы неполадок системы VVTI
Итак, система должна изменять фазы работы Если с ней возникают какие-либо проблемы, тогда автомобиль не сможет нормально функционировать в одном либо в нескольких рабочих режимах. Можно выделить несколько симптомов, которые скажут о неисправностях.
Так, автомобиль не удерживает холостые обороты на одном уровне. Это говорит о том, что VVTI-клапан не работает так, как нужно. Также о различных неполадках в системе скажет «торможение» двигателя. Часто при проблемах с этим механизмом изменения фаз отсутствует возможность мотора работать на низких оборотах. Еще о проблемах с клапаном может говорить ошибка P1349. Если на прогретом силовом агрегате высокие холостые обороты, автомобиль совсем не едет.
Заключение
В заключении, хочу показать ту распиновку ЭБУ Sagem S2000, с которым мне приходилось работать.
Распиновка:
- NR-32V A4 — +12В после реле 12V RL
- NR-32V H4 — Масса GND
- MR-48V B3 — Линия диагностики L-LINE (при программировании не подключал)
- MR-48V B4 — +12В после замка зажигания 12V IGN
- MR-48V H2 — Линия диагностики K-LINE
- MR-48V L4 — Масса GND (при программировании не подключал)
- MR-48V M4 — Масса GND (при программировании не подключал)
- GR-32V H1 — Масса GND (при программировании не подключал)
Читал и записывал прошивку программатором KTAG от Alientech (family 599). Ну и напоследок, перед подключением ЭБУ Sagem S2000 на столе, любой модификации, советую заглянуть в электрические схемы того автомобиля, с которым работаете. Ну и не лишним будет сверить питание +/- и линию диагностики на автомобиле, с той схемой по которой будете подключать ЭБУ. Ниже приведена электрическая схема системы управления двигателя, автомобиля Peugeot 206 1.4L KFW , распиновка ЭБУ которого, приведена выше. Обратите внимание на отсутствие контактов ЭБУ (A4. H4, A1. M1 и A1. H1) и дроссельного узла, с электрическим приводом.
Итак, обобщая всю вышеизложенную информацию, при работе с ЭБУ Sagem S2000, причём любой модификации (в следующих статьях будут описаны ещё 5), нужно:
- Правильно идентифицировать блок (номера ‘HOM’, расположение конденсатора, число контактов в разъёмах)
- После идентификации блока вы точно узнаете на чём он собран (MCU, FLASH, EEPROM) и где расположены элементы
- Правильно определить распиновку ЭБУ используя электросхему и сверяя с сигналами в проводке автомобиля
* Дополнительные материалы по PSA Sagem S2000 (по ЭБУ разных модификаций и в целом по работе системам впрыска) — Скачать.
* Видео на youtube.com по ЭБУ Sagem S2000 (очистка ЭБУ от компаунда, работа с иммобилайзером) — Смотреть
* Статьи о других модификациях ЭБУ Sagem S2000, на сайте —
Особенности конструкции и работы двигателя TSI
Основная особенность большинства силовых агрегатов линейки – двойная система нагнетания воздуха. В ней устанавливаются стандартный турбокомпрессор, приводимый в движение за счет потока отработанных газов и механический нагнетатель, с ременным приводом от коленвала.
Конструкция и работа мотора с двойным наддувом
Комбинация устройств нагнетания воздуха предназначена для получения номинального момента в практически в полном диапазоне скоростей вращения.
Механический нагнетатель представляет систему из двух роторов, размещенных в одном корпусе. Направления вращения роторов противоположны (система типа Roots). Первый обеспечивает принудительное всасывание воздуха из трубопровода, второй – его сжатие и нагнетание во впускной коллектор. Параллельно нагнетателю установлена заслонка, обеспечивающая регулирование давления в контуре.
Система, кроме непосредственно компрессоров (турбины и механического) включает
- набор датчиков измеряющих давление в трубопроводе всасываемого воздуха, впускном коллекторе, давление наддува;
- управляющих исполнительных механизмов.
К последним относятся:
- Магнитная муфта для включения и выключения механического нагнетателя. Сигнал управления подается от БУ. При его наличии напряжение поступает на катушку, подвижный сердечник перемещает фрикционный диск, передающий вращающее усилие от шкива на ротор компрессора. Нагнетатель остается в работе до тех пор, пока не будет снят сигнал управления.
- Серводвигатель, служащий для управления регулирующей заслонкой. Если заслонка закрыта, весь поток воздуха проходит через нагнетатель. При повороте заслонки часть сжатого воздуха с выхода компрессора поступает на вход, что приводит к снижению давления наддува. Если компрессор отключен, заслонка переводится в полностью отрытое положение.
- Клапан ограничения давления предназначен для управления перепускным клапаном, регулирующим давление наддува от турбины. Срабатывает он в случае, когда поток выхлопных газов раскручивает турбокомпрессор, и в контуре создается избыточное давление наддува. В этом случае сигнал от клапана ограничения поступает на вакуумный привод перепускного клапана, последний открывается, направляя часть потока отработанных газов мимо турбины.
- Клапан рециркуляции работает при закрытой дроссельной заслонке (принудительный холостой ход). Его задача – предотвратить нагнетание воздуха в пространстве между выходом турбокомпрессора и заслонкой.
Принцип работы системы
Система двойного нагнетания воздуха работает в нескольких режимах (в зависимости от числа оборотов двигателя):
- Безнаддувный – холостой ход, скорость до 1000 об/мин. В этом режиме на магнитную муфту не подается управляющий сигнал, механический нагнетатель не включается, установленная параллельно ему регулирующая заслонка открыта полностью. Поток отрабюотанных газов не может раскрутить турбину до скоростей, обеспечивающих нагнетание.
- Механический наддув. Режим характерен для частоты вращения вала вала в диапазоне от 1000 до 2400 об/мин. В этом режиме подается сигнал на магнитную муфту, включающую механически нагнетатель. Сервопривод закрывает регулирующую заслонку. Растет число оборотов турбины, обеспечивая незначительное дополнительное сжатие воздуха. Давление нагнетания составляет порядка 0.17 МПа.
- Двойной наддув от механического и турбокомпрессора (скорость вала 2400-3500 об/мин). Основное давление нагнетания создается турбиной, получающей достаточную энергию от потока выхлопных газов. Механический нагнетатель вступает в работу при резком увеличении нагрузки, например, при значительных ускорениях и обеспечивает дополнительное сжатие. Давление нагнетания составляет до 0.25 МПа.
- Турбонаддув (3500 об/мин и выше). Энергии отработанных газов достаточно, чтобы турбина создавала необходимое давление наддува. Механический нагнетатель не работает (заслонка полностью открыта). Давление составляет около 0.18 МПа.
За счет такой комбинации устраняется характерный для турбированных моторов т.н. «эффект турбоямы», когда на низких оборотах энергии выхлопных газов недостаточно, чтобы турбокомпрессор обеспечивал необходимое давление нагнетания.
Силовые агрегаты TSI без механического нагнетателя
Для двигателя TSI Volkswagen без механического нагнетателя используется практически традиционная схема с одним трубокомпрессором. При этом конструкция турбины оптимизирована для получения высокого крутящего момента в широком диапазоне скоростей вала (практически от 1.5 тыс. до 4 тыс. об/мин). Достигается это за счет благодаря значительному низкому моменту инерции вращающихся деталей – за счет применения материалов, снижающих вес рабочего колеса и уменьшения его наружного диаметра без потери эффективности производительности.
Принцип работы двигателя сохранил классический вариант регулирования давления нагнетания с перепускным клапаном. Основной особенностью системы стало применение отдельного контура жидкостного охлаждения нагнетаемого воздуха (в системах с двойным наддувом используется воздушное охлаждение). При этом охладитель (радиатор из алюминиевых пластин с трубками для подачи охлаждающей жидкости) размещен непосредственно во входном коллекторе.
Система впрыска
Для двигателя TSI Shkoda, Volkswagen, Seat и TFSI Audi реализована система непосредственного впрыска топлива (в обозначениях производителя Stratified Injection – послойный впрыск). Фактически, она является аналогом системы GDI (Gasoline Direct Injection – непосредственный впрыск бензина), впервые примененной на авто японского производителя Mitsubishi.
Основным достоинством считающейся наиболее прогрессивной системы для бензиновых моторов является значительное сокращение расхода топлива (может достигать 15%) при снижении в выхлопе концентрации опасных веществ.
Устройство системы
В состав системы входят 2 контура:
- Низкого давления (давление 0.05-0.5 МПа) – топливный бак с установленным топливным насосом, фильтр и датчик низкого давления.
- Высокого давления.
В контур высокого давления входят:
- Топливный насос высокого давления (ТНВД). Устройство обеспечивает подачу топлива под давлением от 3 до 11 МПа на топливную раму и далее в форсунки. Насос плунжерного типа, приводится от распредвала ГРМ, работающего на впускные клапаны.
- Регулятор давления предназначен для дозировки подачи.
- Датчик высокого давления передает информацию в БУ, который формирует сигнала на управление ТНВД и регулятором.
Работа системы
Хотя в названии системы используется только термин «послойный впрыск», она обеспечивает, в зависимости от режима работы силового агрегата, несколько видов образования топливо-воздушной смеси:
- Послойное, характерно для работы двигателя в бОльшей части диапазона – на средних и малых скоростях. При этом дроссельная заслонка открыта практически полностью, впускные — закрыты. Нагнетаемый в камеры сгорания воздух, за счет высокой скорости, образует вихрь. Впрыск топлива производится на конечном отрезке такта сжатия. При этом в области искрового промежутка свечи образуется ограниченный объем обогащенной смеси (коэффициент избытка воздуха – 1.5-3). Вокруг очага воспламенения остается объем несмешанного с топливом воздуха, обеспечивающий теплоизоляцию.
- Стехиометрическое гомогенное (легковоспламеняемое однородное) для значительных нагрузок и скоростей вала. Заслонки — открыты, как дроссельная (в соответствии с нажатием педали газа), так и впускные. Топливо подается на такте впуска. В результате образуется однородная топливо-воздушная смесь с коэффициентом запаса воздуха 1. Сгорание происходит во всем объеме камеры
- Обедненное гомогенное для промежуточных режимов работы. Образование смеси происходит при полном открывании дроссельной при закрытых впускных заслонках на такте впуска. Коэффициент избытка воздуха 1.5, в смесь может добавляться часть (до 25%) отработанных газов.
В результате работы в нескольких режимах смесеобразования достигается необходимое для каждого режима работы двигателя качество смеси и ее сгорание, что повышает КПД двигателя, обеспечивает экономию топлива и снижение содержания вредных веществ в отработанных газах, дает некоторый прирост мощности.
Отзывы на двигатель, плюсы и минусы
Среди отзывов о двигателе 1G FE чаще встречаются положительные, как со стороны автомехаников, так и водителей. Из плюсов стоковой модели отмечают:
- надёжность;
- живучесть;
- тихую работу;
- простую конструкцию;
- ремонтопригодность.
Вариация 1G FE BEAMS привлекает скоростными характеристиками. С другой стороны, конструкция двигателя стала сложной, что повлияло на стоимость обслуживания и ремонта. К минусам агрегата относят возможность загибания ножек клапанов.
Недостатка в запчастях для 1G FE нет, цены на расходники вполне приемлемы. Но в целом капремонт двигателя обходится дорого, поэтому водители предпочитают менять родной ДВС на контракт. Контрактный мотор с навесным оборудованием из Японии обойдётся в 25 — 75 000 р. в зависимости от пробега и состояния.
Чтобы повысить характеристики двигателя водители тюнингуют агрегат:
- меняют коллекторы;
- рассчитывают новую выхлопную систему;
- устанавливают фильтр-нулевик на впуск;
- растачивают цилиндры;
- ставят новые клапана и распредвалы;
- дорабатывают ГБЦ;
- перепрошивают ЭБУ;
- ставят дополнительные датчики.
Объём работ и стоимость материалов вылезают в кругленькую смету, а получить желаемый эффект не всегда удаётся. На низких и средних оборотах двигатель не будет ехать, а главное достоинство агрегата — надёжность — сведётся к нулю. В этом случае, проще всего купить новый автомобиль с желаемыми параметрами.