0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрические машины постоянного тока как двигатель

6.2.4. КРУПНЫЕ МАШИНЫ ПОСТОЯННОГО ТОКА

6.2.4. КРУПНЫЕ МАШИНЫ ПОСТОЯННОГО ТОКА

Еще до войны производство крупных машин постоянного тока было сосредоточено на заводах «Электросила» и ХЭМЗ и развивалось ускоренными темпами. На заводе «Электросила» в предвоенные годы было изготовлено свыше 200 единиц крупных электрических машин постоянного тока общей мощностью около 350 тыс. кВт. Из числа наиболее крупных поставок следует отметить электродвигатели для привода блюмингов (5150 кВт, 750 В, 50/120 об/мин) и слябингов (3700 кВт, 750 В, 50/100 об/мин; 1850 кВт, 750 В, 100/270 об/мин) и генераторы единичной мощностью 3500 кВт. ХЭМЗ совместно с заводом «Электросила» также освоил новую серию крупных машин постоянного тока мощностью до 7500 кВт с одним якорем.

Разработка серий прокатных реверсивных электродвигателей в диапазоне мощностей от 1850 до 6000 кВт и серии регулируемых электродвигателей в диапазоне от 110 до 4500 кВт с регулированием частоты вращения в пределах 1:3 была продолжена после войны. Завод «Электросила» произвел пересмотр расчетов и конструкций крупных машин постоянного тока с компенсационными обмотками и добился существенного повышения удельной мощности и экономии черных и цветных металлов. Коллектив работников завода в составе В.Т. Касьянова, А.А. Кашина, Р.А. Лютера, И.Н. Рабиновича и Д.В. Шапиро в 1948 г. получил высокую государственную оценку за создание крупных машин постоянного тока.

Важным этапом на пути повышения технического уровня машин постоянного тока явилась разработка в 1957 г. двухъякорного электродвигателя мощностью 19 600 кВт для привода гребных винтов атомного ледокола «Ленин» с двухходовой обмоткой якорей. Изучению особенностей работы двухходовых обмоток было посвящено много теоретических (В.В. Фетисов, П.М. Ипатов) и экспериментальных (О.Г. Вег-нер) работ, в результате которых были предложены рекомендации, позволившие заводу «Электросила» внедрить двухходовые обмотки якоря. Таким образом было преодолено ограничение мощности машины постоянного тока по значению допустимого напряжения между смежными пластинами. В 1958 г. был изготовлен электродвигатель мощностью 8840 кВт, напряжением 900 В, частотой вращения 65/90 об/мин, в 1977 г. — соответственно 12 500 кВт, 930 В, 63 /90 об/мин, а в 1985 г. — 10 000 кВт, 750 В, 32/63 об/мин. В итоге рост мощности реверсивного прокатного двигателя привел к реализации самого большого в мире вращающего момента 300 т-м.

Рис. 6.1. Электродвигательный агрегат, состоящий из четырех двигателей постоянного тока типа 2МП 25000–750 (25 МВт, 750 об/мин)

Значительный прогресс был достигнут в создании двухъякорных двигателей мощностью 11 000–14 000 кВт для электропривода нереверсивных прокатных станов. Характерными для этих машин, имеющих сравнительно высокую частоту вращения, являются показатель предельности, равный произведению мощности на частоту вращения, и коэффициент регулирования магнитного потока. Самый мощный из выпущенных нереверсивных прокатных электродвигателей мощностью 14 200 кВт с частотой вращения 200 об/мин имеет показатель предельности 5,8—10 кВт?об/мин на один якорь. Необходимо отметить, что за рубежом двигатели для аналогичных прокатных станов изготовлялись не двухъ-, а трехъякорными даже при меньшей мощности. Дальнейшее повышение показателя предельности было возможно при переходе на трехходовые обмотки якоря. В 1973–1974 гг. были проведены исследования двух опытных машин с трехходовыми петлевыми обмотками, а в 1975–1976 гг. опытной двухъякорной машины мощностью 25 МВт с частотой вращения 750 об/мин, которые создали основу для изготовления уникального агрегата, состоящего из четырех двухъякорных электродвигателей постоянного тока такого типа с трехходовыми обмотками, соединенными на валу последовательно, что позволило получить мощность 100 МВт при частоте вращения 750 об/мин (рис. 6.1).

Читать еще:  Вортекс эстина стук двигателя

Гребные винты атомных ледоколов «Сибирь», «Арктика» и «Россия» оснащены электродвигателями мощностью 2×8800 кВт, напряжением 1000 В и частотой вращения 130/185 об/мин.

Выпускаемый с 70-х годов объединением «Электросила» генератор постоянного тока для питания прокатных двигателей мощностью 9500 кВт, напряжением 930 В и частотой вращения 375 об/мин по мощности превосходит все существующие типы генераторов постоянного тока как у нас в стране, так и за рубежом. Использование в конструкции генератора новых технических решений обеспечивает равномерное распределение крутящего момента между дисками якоря и гарантированное усилие на главный полюс, способствуя повышению надежности генератора в эксплуатации.

Успехи в производстве крупных машин постоянного тока достигнуты не только объединением «Электросила», но и заводами ХЭМЗ и «Электротяжмаш» (Харьков). На ХЭМЗ под руководством М.Н. Курочкина разработаны реверсивные двигатели постоянного тока 21–25-го габаритов серии П2 номинальной мощностью до 12 500 кВт, а также двигатели постоянного тока 21–25-го габаритов для электроприводов шахтоподъемных машин мощностью 1600–5000 кВт. Помимо обычной конструкции двигателей шахтного подъема с двумя стояковыми подшипниками разработаны и находятся в эксплуатации двигатели консольного исполнения. При такой конструкции якорь двигателя насаживается на вал барабана шахтного подъемника, что позволяет снизить массу машины в 1,2–1,4 раза.

Крупные машины постоянного тока находят широкое применение для приводов шагающих экскаваторов и роторных комплексов. Они устанавливаются в закрытом неотапливаемом кузове экскаватора и могут работать в заданном режиме при наличии вибрации, крена, воздействия инерционных сил и одиночных ударов. Наиболее интересен электродвигатель мощностью 500 кВт, напряжением 440 В и частотой вращения 32 об/мин, предназначенный для безредукторного привода механизма поворота платформы шагающего экскаватора.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Преимущества эксплуатации и недостатки конструкции

Основные достоинства двигателей с постоянными токовыми величинами представлены:

  • конструкционной простотой устройства;
  • интуитивной доступностью управления;
  • почти линейного типа механической и регулировочной характеристиками движка;
  • легкостью регулирования показателей вращательной частоты;
  • достойными пусковыми характеристиками в виде большого пускового момента;
  • наибольшим пусковым моментом с характерным последовательным типом возбуждения;
  • относительной компактностью по сравнению с габаритами других видов конструкций;
  • возможностью применения в режимах двигателя и генератора.

Принцип устройства электродвигателя постоянного тока

К наиболее значимым недостаткам конструкций могут быть отнесены не всегда доступная цена комплектующих изделий, а также необходимость подсоединения выпрямительных устройств.

Магнетизм и электромагнетизм

Все знают, что такое магнит. Также все замечали, что магниты притягивают к себе стальные предметы не только при непосредственном соприкосновении, но
и на расстоянии, что свидетельствует о наличии вокруг них магнитного поля. Каждый магнит имеет два полюса, которые условно называют северным (N) и южным (S). При сближении одноименных полюсов двух магнитов они отталкиваются, а при сближении разноименных полюсов- притягиваются.

Магнитное поле, созданное вокруг магнитов, состоит из магнитных силовых линий, направленных от северного полюса к южному. С удалением от магнита величина магнитного поля уменьшается.

Магнитное поле вокруг проводника с током

Если через проводник пропустить электрический ток, то вокруг него создается кольцевое магнитное поле без выраженных полюсов. Если же проводник свернуть в виде спирали, то при прохождении по нему тока магнитное поле образует на концах спирали полюса- северный и южный. Если в середину такой катушки поместить стальной сердечник, то образуется электромагнит, имеющий все свойства обычного магнита (очень наглядно это показано в мультфильме “Ивашка из дворца пионеров”, где главный герой с помощью электромагнита расправляется с Кащеем Бессмертным).

Простейший электромагнит

Магнитное поле электромагнита можно увеличивать или уменьшать, изменяя силу тока или количество витков катушки. С увеличением силы тока или количества витков электромагнита увеличивается его магнитное поле.

Читать еще:  Что такое цилиндры в двигателе карбюратор

Если проводник с током поместить в магнитное поле магнита (электромагнита), то в результате взаимодействия магнитных полей проводника и магнита проводник будет выталкиваться, т.е. электрическая энергия будет превращаться в механическую. На этом явлении основана работа электродвигателей.

Принцип работы генератора Принцип работы электродвигателя

Для превращения механической энергии в электрическую используют явление электромагнитной индукции. Если замкнутый проводник вращать в магнитном поле, то в проводнике возникает электрический ток. Величина тока зависит от длины проводника, скорости пересечения,плотности магнитного поля и угла, под которым пересекаются магнитные силовые линии. На этом явлении основана работа генератора.

Вы, конечно же обратили внимание, что картинки практически одинаковы? Не удивляйтесь, это свидетельство обратимости электрических машин. Обратимость электрических машин — одинаковое устройство преобразователей электрической энергии в механическую и механической в электрическую. Таким образом, электрические машины взаимозаменяемы: любой электродвигатель может использоваться в качестве генератора и наоборот. Приоритетная функция электрической машины определяет её конструктивные особенности, вследствие которых обратимость становится неравномерной. Говоря по-русски, электрогенератор будет работать лучше, чем используемый в качестве генератора соответствующий по размерам электродвигатель, и наоборот.

Графитные материалы электрощеток

Применяются в электродвигателях постоянного тока, бытовой технике

Г3 Электрические машины постоянного тока напряжением до 220 В; генераторы с большой силой тока; сварочные генераторы; кольца возбуждения синхронных генераторов; контактные кольца асинхронных двигателей и одноякорных преобразователей
Г20 Машины постоянного тока и коллекторные машины переменного тока с низкими значениями трансформаторной и реактивной ЭДС
Г26

Углеграфитные материалы электрощеток

Г21 Электродвигатели бытовых пылесосов
Г22
Г30
Г33 Электродвигатели дрелей, пил, рубанков, поливочных насосов, миксеров, кофемолок
Г33М Электродвигатели дрелей, пил, рубанков, поливочных насосов, миксеров, кофемолок
Г34

Электрографитированные материалы электрощеток

Электрографитированные щетки ЭГ обладают хорошими механическими и электрическими характеристиками (твердость, коэффициент трения, плотность тока). Электрографитированные щетки подвергаются длительному нагреву до температуры 2900°С, благодаря чему угольный пек, входящий в состав щеток образует структуру графита. Маркировка электрощеток ЭГ идет с возрастанием твердости и электрического сопротивления.

ЭГ2А Электрические машины ж/д транспорта, экскаваторов, металлургической промышленности
ЭГ2АФ
ЭГ4 Электрические машины постоянного тока с резко выраженной неравномерностью нагрузки; гребные двигатели; электропривод вентиляторов, машины универсального назначения; Контактные кольца цепей возбуждения турбогенераторов мощностью менее 200 Мвт и одноякорных преобразователей;Электрические машины постоянного тока небольшой мощности для контактных колец синхронных и асинхронных двигателей с фазным ротором
ЭГ8 Электродвигатели и генераторы общепромышленного назначения
ЭГ13
ЭГ13П
ЭГ14 Электропривод различного назначения, в т.ч. мощные двигатели и генераторы с резко выраженной неравномерностью нагрузок; гребные двигатели; сварочные и тяговые генераторы; крановые двигатели постоянного тока; электрические машины постоянного тока для черной и цветной металлургии и для контактных колец
ЭГ141 Тяговые и вспомогательные электрические машины ж/д и городского транспорта,
а также электрические машины общего промышленного применения
ЭГ17 Электродвигатели электробритв
ЭГ2АФ1 Контактные кольца турбогенераторов и синхронных компенсаторов
ЭГ50 Электродвигатель постоянного тока МЭ 272, для вентиляторов системы охлаждения двигателей транспорта
ЭГ51
ЭГ51А
ЭГ61 Тяговые электродвигатели тепловозов, электровозов
ЭГ61А (ЭГ61УМК) Электрические двигатели напряжением до 500В для подвижного ж/д состава, современных магистральных электровозов
ЭГ62
ЭГ63
ЭГ71 Электрические машины с затрудненными условиями коммутации
ЭГ71УМК Машины постоянного тока напряжением до 500 В. с тяжёлыми условиями коммутации
ЭГ74 Электрические машины постоянного тока с наиболее тяжелыми условиями коммутации и резко выраженной неравномерностью прикладываемых нагрузок; мощные тяговые двигатели некоторых типов современных локомотивов
ЭГ74АФ
ЭГ74К
ЭГ74М Электрические машины металлургической промышленности, горного оборудования, электростанций
ЭГ75 Электрические тяговые двигатели и высоковольтные вспомогательные машины современных магистральных электровозов; тяговые электрические машины с тяжелыми условиями коммутации и повышенными температурами нагрева
ЭГ84
ЭГ841 (ЭГ84УМК) Тяговые и вспомогательные двигатели городского транспорта; тяговые двигатели мощных самосвалов с электроприводом
ЭГ85
ЭГ86

Читать еще:  Что происходит при клине двигателя

Металлографитные материалы электрощеток

В состав металлографитных щеток входит медный порошок с добавлением свинца, олова серебра.

М1 Контактные кольца синхронных генераторов, одноякорные преобразователи и асинхронных двигателей; зарядные генераторы напряжением 20-60 В; генераторы переменного тока автотракторного электрооборудования
М1А Генераторы переменного тока автомобилей и автобусов
М6
М20
МГ Низковольтные машины с высокой плотностью тока
МГ4 Контактные кольца одноякорных преобразователей, асинхронных двигателей и синхронных генераторов; машины постоянного тока напряжением до 40 В
МГ4С Стартеры автотракторные
МГСО Электрические машины низковольтные и стартеры автотракторные; контактные элементы, работающие в среде жидкого диэлектрика; токосъемники авиационной техники, стартеры авиационные
МГСОА
МГСО1 Стартеры легковых автомобилей и тракторов
МГСО1А
МГС5 Генераторы, преобразователи, токосъемники, электродвигатели и стартеры авиационной техники; стартеры автотракторного транспорта
МГС7 Генераторы, электродвигатели, токосъемники и преобразователи авиационной техники
МГС9А Электродвигатели вентиляторов отопителей грузовых автомобилей
МГС20 Стартеры автомобилей и тракторов
МГС22Н Токосъемные заземляющие устройства тяговых двигателей подвижного состава
МГС51
МГК1 Моторредукторы электроблокировки дверей автомобилей
611ОМ Электрические машины с контактными кольцами; электрические машины низковольтные коллекторные с облегченными условиями коммутации
961, 961М Электродвигатели вентиляторов отопителей, стеклоочистителей, фароочистителей, стеклоомывателей легковых и грузовых автомобилей

Область применения

Система постоянного тока в самолете

Генераторы постоянного тока имеют довольно обширный список применения. Его активно используют практически во всех отраслях промышленности, особенно в автомобилестроении и при сооружении российских локомотивов нового поколения, которые оснащают асинхронные двигатели, характеризующиеся работой на переменном токе.

Также электротехническое оборудование может использовать в быту для портативных сварочных аппаратов с автономной системой питания и для бытовой техники, оснащенной мощными пусковыми двигателями.

Перед покупкой следует проанализировать, с какими целями электротехническое оборудование должно будет справляться. Исходя из этого подбирается наиболее подходящая модификация генераторов постоянного тока.

Приобрести оборудование можно в специализированных магазинах или на интернет-площадках. При покупке важно проверить наличие всей необходимой сопроводительной документации и гарантийного талона. Предварительно также осматривается целостность корпуса и наличие повреждений: если таковые имеются, лучше воздержаться от покупки. При покупке через интернет стоит внимательно ознакомиться с отзывами о магазине на различных форумах.

Осуществление переключения и контроля двигателей

Данная разновидность двигателей имеет два режима: они могут быть включёнными, либо отключёнными. Такое переключение делается переключателями, реле, транзисторами или же МОП-транзисторами.

В схеме управления используется биполярный транзистор, он играет ключевую роль в переключении режимов.

Контроль скорости двигателя

Потому как скорость данной разновидности двигателей является пропорциональной напряжению на клеммах, можно использовать транзистор для регулирования напряжения на них. Эти два транзистора подключены как пара для управления током главного ротора.

Регулировка скорости импульса

Скорость вращения данной разновидности электрических двигателей является пропорциональной среднему давлению на второй клемме.

Изменение направления движения двигателя постоянного тока

Есть много преимуществ в управлении скоростью данной разновидности электрических двигателей, но есть один большой недостаток: направление вращения всегда одно и то же. Во многих случаях машина действует по простому принципу, чтобы двигаться вперед и назад. H-мостовая схема двигателя.

Базовая конфигурация четырех переключателей, будь то электромеханические реле или транзисторы, аналогична букве Н с двигателем, расположенным на шине посередине.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector