1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель ванкеля принцип работы гиф

Роторно-поршневой двигатель

Ро́торный дви́гатель (РД, РДВС, двигатель Ва́нкеля) — роторный двигатель внутреннего сгорания, конструкция которого разработана в 1957 году инженером компании NSU Вальтером Фройде. Ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя [1] .

Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рёло, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде (возможны и другие формы ротора и цилиндра [2] ).

Характеристика

Итак, что это за мотор? Это двигатель внутреннего сгорания, который был разработан Феликсом Ванкелем в 1957 году. Функцию поршня в данном агрегате выполнял трехвершинный ротор. Он совершал вращательные движения внутри полости особой формы.

После ряда экспериментальных моделей мотоциклов и автомобилей, которые пришлись на 70-е годы прошлого века, спрос на двигатель Ванкеля существенно снизился. Хотя на сегодняшний день ряд компаний все равно работает над совершенствованием данного ДВС. Так, можно встретить двигатель Ванкеля на «Мазде» серии РХ. Также данный агрегат нашел свое применение в моделизме.

История создания роторного двигателя

Силовые агрегаты с ротором вместо поршневой группы получили устойчивое название «двигатель Ванкеля», по фамилии изобретателя. На самом деле в мире было разработано несколько типов роторных моторов, отличных от изобретения Ванкеля. Но первым в этой области еще в 1920-ых годах начал работать именно немецкий инженер Фридрих Ванкель.

Для двигателя требовались узлы и детали, производство которых возможно только с применением высоких технологий металлообработки, точнейшей подгонки, с чем в то время были определенные трудности. Поэтому быстро запустить изделие в серию сразу не получилось. К тому же началась Вторая мировая война, когда требовались не экспериментальные, а серийные проверенные изделия.

Работы над двигателем были завершены уже во Франции, куда попало оборудования из побежденной Германии, в 1957 году, в компании NSU под руководством инженера Вальтера Фройде.

Применение двигателя Ванкеля на Западе и в СССР

Первый роторный двигатель мощностью 57 л.с. был установлен в 1957 году на спорткар фирмы NSU «Спайдер». Спорткар развивал невероятные для того времени и такой мощности ДВС скорость – 150км/час.

Автомобиль NSU Spider

С 1963 года роторные двигатели стали использовать на серийных автомобилях для населения. Несколько лет их ставили на «Мерседесы», «Шевроле» и «Ситроены». Но двигатель показал ряд существенных недостатков. В результате производители вернулись к использованию классических, проверенных поршневых ДВС.

Настойчивее остальных оказались японские автопроизводители. Они использовали роторные ДВС на некоторых моделях «Мазда». Устранялись слабые места, увеличивался моторесурс до капремонта, снижалось потребление топлива. Однако по ряду причин и японцы вернулись к классическим ДВС . Последняя Мазда RX Spirit R с роторным двигателем сошла с конвейера в 2012 году.

В СССР первый роторный двигатель отечественного производства ставился в 1974 году на легендарную «копейку» – ВАЗ 2101.

Для его создания было организовано специальное конструкторское бюро. Прообразом служил двигатель Ванкеля. Было изготовлено около 50 опытных образцов с маркировкой ВАЗ 311. ВАЗы с ними не продавались населению, а поступили в распоряжение сотрудников ГАИ и КГБ в качестве служебных машин.

Поначалу «копейки» с этим силовым агрегатом вызывали восхищение своей мощью, динамикой разгона, низким шумом и плавностью хода. Но уже через год на ходу осталась только одна машина. Двигатели остальных вышли из строя. Основной причиной поломок стала ненадежность уплотнений, обеспечивающих герметизацию камер сгорания во время вспышки топлива.

Работы над отечественным роторным ДВС продолжались, и были созданы мощные двухсекционные ВАЗ 411 и 413 мощностью 120 и 140 л.с. “Жигули” с этими двигателями снова попали на службу в силовые структуры.

Данное достижение советского автопрома не афишировалось. В народе лишь ходили слухи о том, что сотрудники КГБ ездят на скоростных авто с невероятными секретными двигателями.

Затем были разработаны роторные двигатели ВАЗ 414 и 415. Это были более совершенные универсальные агрегаты. Их можно было ставить как на вазовские «восьмерки» и «девятки», так и на не менее популярные в то время «Москвичи» и «Волги».

Последняя разработка ВАЗ 415 так и не была использована. Ее предшественник, ВАЗ 414 с 1992 года ставился на популярной модели авто ВАЗ 2109 («Спутник», «Самара»).

«Девятки» с этими двигателями обладали необычными характеристиками. Разгон до 100 км/ч за 8 секунд, возможность длительной работы на предельно высоких оборотах. ВАЗ 414 потреблял меньше топлива (14-15 л на 100 км), чем предыдущие роторные ДВС (18-20 л на 100 км). Но все равно больше, чем поршневой мотор.

Однако и на ВАЗе роторные ДВС не смогли конкурировать с традиционными, и вскоре их использование было прекращено.

Работы над усовершенствованием роторных ДВС ведутся в мотоциклетной отрасли. В начале 1980-ых был создан мотоцикл Norton с двигателем Ванкеля, который показал невероятные результаты. Сегодня компания выпускает байки с таким двигателем объемом 588 куб.см. Ведутся работы над новым мотором с объемом 700 куб.см.

Автомобилей в такими двигателями сегодня не выпускают. Не исключено, что автопроизводители могут вести конструкторские работы в этом направлении без афиширования, втайне от конкурентов.

Читать еще:  Что означает гибридный двигатель

Конструкция

Давайте рассмотрим основные части РПД:

  • корпус двигателя;
  • ротор;
  • выходной вал.

Как и любой другой двигатель внутреннего сгорания, двигатель Ванкеля имеет корпус, который включает основную рабочую камеру, в нашем случае – овальной формы.

Форма камеры сгорания (овал) обусловлена применением трехгранного ротора, грани которого при соприкосновении со стенками камеры сгорания овальной формы образуют изолированные закрытые контуры. В этих изолированных контурах и происходят все такты работы РПД:

  • впуск;
  • сжатие;
  • воспламенение;
  • выпуск.

Такая компоновка позволяет обойтись без впускных и выпускных клапанов. Впускные и выпускные отверстия находятся по бокам камеры сгорания, а соединены напрямую к системе питания и системе выпуска отработанных газов.

Следующей составной частью роторного мотора является непосредственно ротор. В РПД ротор выполняет функцию поршней в обычном двигателе. Своей формой ротор похож на треугольник с закругленными наружу краями и вдающимися внутрь гранями. Закругление краев ротора необходимо для лучшего уплотнения камеры сгорания. Выборка внутри грани нужна для увеличения объема камеры сгорания, правильного горения топливно-воздушной смеси и увеличения скорости вращения ротора. Вверху каждой грани и по ее бокам находятся металлические пластины, задача которых состоит в уплотнении камеры сгорания, аналогично поршневым кольцам классического ДВС. Внутри ротора расположены зубцы, вращающие привод, который, в свою очередь, вращает выходной вал.

Классический мотор имеет коленчатый вал, в РПД его функцию выполняет выходной вал. Относительно центра выходного вала расположены выступы-кулачки в форме полукругов. Выступы-кулачки несимметричны по отношению к центру и явно смещены относительно центра оси. На каждый выступ-кулачок выходного вала приходится по своему ротору. Вращательное движение каждого ротора, передаваемое на выступ-кулачок, заставляет выходной вал вращаться вокруг своей оси, что, в свою очередь, создает крутящий момент на выходном валу.

Рабочие такты РПД

Давайте теперь более подробно рассмотрим принцип работы роторного двигателя и рабочие процессы, происходящие внутри него. Как и классический мотор, двигатель Ванкеля имеет те же такты впуска, сжатия, рабочего хода и выпуска.

Начало такта впуска происходит в момент прохода одной из вершин ротора впускного канала корпуса мотора. В этот момент в постепенно расширяющуюся камеру сгорания всасывается топливно-воздушная смесь либо просто воздух, в зависимости от компоновки системы подачи топлива. При дальнейшем вращении ротора к точке, когда вторая вершина проходит впускной канал, начинается такт сжатия топливно-воздушной смеси. Давление смеси вместе с движением ротора постепенно нарастает и достигает своего пика в момент прохождения зоны свечей зажигания. В момент воспламенения начинается такт рабочего хода ротора.

В связи с особой формой камеры сгорания, вытянутой вдоль стенки корпуса, целесообразно использовать две свечи зажигания. Использование двух свечей позволяет быстро и равномерно произвести поджиг топливно-воздушной смеси, что гарантирует быстрое, плавное и равномерное распространение фронта пламени.

Две свечи может иметь и обычный поршневой мотор, например некоторые спортивные двигатели, но в РПД использование двух свечей зажигания просто необходимо.

Образовавшееся давление газов поворачивает ротор на эксцентрике вала, что в свою очередь приводит к возникновению крутящего момента на выходном валу. При приближении к выпускному каналу вершины ротора давление в камере сгорания плавно снижается. Вращаясь по инерции, вершина ротора достигает выпускного канала, начинается такт выпуска. Выхлопные газы устремляются в выпускной канал, и как только вершина ротора достигает впускного канала, снова начинается такт впуска.

Система питания и смазка

Роторный мотор не имеет принципиальных отличий от классического ДВС в системах зажигания, топливоподачи и охлаждения. Однако система смазки имеет свои особенности. Для смазывания движущихся частей масло подается прямо в камеру сгорания через специальное отверстие, поэтому сгорает вместе с топливно-воздушной смесью как в двухтактном двигателе.
Как и любая техническая конструкция, роторный мотор обладает своими преимуществами и недостатками.

Конструкция и принцип действия роторного двигателя

Ротор двигателя имеет треугольную форму с выгнутыми наружу (выпуклыми) сторонами (рис. «Сравнение четырех тактов рабочего цикла роторного двигателя и двигателя с возвратно-поступательным движением поршней» ). Внутри охлаждаемого водой кожуха находится овальная или, точнее, эпитрохоидальной формы камера ротора. При враще­нии ротора три его вершины обкатываются по стенке корпуса, образуя три взаимно гермети­зированные камеры с изменяемым рабочим объемом (А, В, С), располагаемые через 120° по дуге окружности. Каждая из этих камер обеспе­чивает реализацию полного четырехтактного цикла сгорания при каждом полном обороте ротора; т.е. за один полный оборот треугольного ротора двигатель заканчивает четырехтактный процесс три раза, а эксцентриковый элемент осуществляет равное число оборотов.

Читать еще:  Время работы коллекторного двигателя

Передаточное отношение зубчатого колеса с внутренними зубьями и ведущего зубчатого колеса составляет 3:2. Следовательно, ротор вращается со скоростью равной одной трети скорости вращения эксцентрикового вала.

Сравнение 4-тактных рабочих циклов роторного двигателя и двигателя с возвратно-поступательным движением поршней

По мере поворота эксцентрикового вала про­исходит увеличение объема (см. рис. а). Это соответствует движению поршня вниз в двигателе с возвратно-поступательным дви­жением поршней, т.е. такту впуска топливно­воздушной смеси.

По мере продолжения поворота ротора впуск­ной канал соответствующей камеры закрыва­ется (рис. Ь), и объем газа, находящегося в камере, сжимается. Для двигателя с возвратно-поступательным движением поршней это соот­ветствует перемещению поршня из НМТ в ВМТ при закрытых клапанах. Перетекание газа мимо трохоидального сужения облегчается за счет выемки в основании ротора (Ь, с).

Незадолго до того, как объем снова начи­нает увеличиваться, производится зажигание, и начинается процесс сгорания смеси (см. рис. с). Давление газов передается ротором на эксцентриковый вал, что вызывает вращение эксцентрикового вала и ротора. При этом объем камеры снова начинает увеличиваться (с, d). Это соответствует рабочему ходу или такту расширения на двигателе с возвратно-­поступательным движением поршня. Здесь эксцентриковый вал выполняет функцию шатунной шейки в двигателе с возвратно-­поступательным движением поршней.

Приблизительно в точке достижения мак­симального объема камеры ротор открывает выпускное отверстие, и начинается выпуск от­работавших газов (см. рис. d), что соответ­ствует такту выпуска в двигателе с возвратно­-поступательным движением поршней.

В двух других камерах, окружающих ротор, выполняется такая же последовательность со смещением на 120° относительно ротора. В результате этого процесса за один оборот ротора впуск смеси через впускной канал и выпуск отработавших газов через выпускной канал осуществляется три раза.

Эквивалентный рабочий объем роторного двигателя вычисляется в соответствии со следующим соотношением:

эквивалентный рабочий объем = количество роторов • объем камеры • 2

Направление движения ротора

Движение ротора по трохоидальной поверх­ности цилиндра направляется:

  • Направляющей шестерней, жестко закре­пленной на торцевом щите;
  • Внутренним зубчатым венцом ротора, ко­торый обкатывается вокруг направляющей шестерни;
  • Эксцентриковым валом, который передает крутящий момент на трансмиссию и, таким образом, эквивалентен коленчатому валу двигателя с возвратно-поступательным движением поршней.

Эксцентриковый вал установлен в подшипниках скольжения в торцевых щитах двигателя и концентрично вращается в направляющей шестерне. Ротор позиционируется на эксцентрике эксцентрикового вала при помощи подшипников сколь­жения. В многороторных двигателях на одном эксцентрике установлено несколько роторов.

Во время вращения ротор опирается с одной стороны на вращающийся эксцентриковый вал, а с другой стороны опора создается в ре­зультате обкатки зубчатым венцом направляю­щей шестерни. Благодаря такому двойному принудительному направлению ротор может вращаться только в пределах трохоидальной поверхности цилиндра таким образом, что его боковые края, скользя по внутренним стенкам цилиндра, образуют три рабочих камеры.

Ротор изготовлен из литой стали и имеет торцевые и радиальные уплотнительные пластины. Эти пластины изготовлены из литой стали и подвергнуты поверхностной электронно-лучевой обработке. Требуемое давление прижима уплотнительных пластин обеспечивается пластинчатыми пружинами.

В трохоидальной камере для смазки уплот­нений установлены маслоразбрызгивающие сопла, подача масла в которые осуществля­ется дозирующим масляным насосом. Это позволяет точно дозировать подачу масла и снизить расход масла приблизительно на 40 % по сравнению с ранними моделями ро­торных двигателей.

Газообмен в роторном двигателе

В отличие от двигателя с возвратно­-поступательным движением поршней, в кото­ром управление газообменом осуществляется клапанами, в роторном двигателе оно осу­ществляется отверстиями в роторе. Впускные и выпускные каналы, на предыдущих версиях двигателя расположенные радиально в трохоидальном корпусе ротора (периферийный впуск и выпуск), в последующих разработках были заменены впускными каналами в торцевых щитах. В последних разработках используются боковые впускные и выпускные каналы.(см. рис. «Роторный двигатель с боковыми впускными и выпускными каналами» ).

Единственным роторным двигателем, уста­навливаемым в настоящее время на серийно выпускаемых легковых автомобилях, явля­ется двухроторный двигатель. Он имеет три боковых впускных канала и два боковых вы­пускных канала для каждого ротора. Боковое расположение каналов газообмена позволяет осуществлять газообмен без перекрытия, что предотвращает перетекание всасываемой све­жей смеси со стороны впуска на сторону вы­пуска. Это дает значительное снижение содер­жания углеводородов в отработавших газах.

Система впуска роторного двигателя

Аналогично двигателю с возвратно­-поступательным движением поршней совре­менные роторные двигатели для легковых автомобилей имеют регулируемую систему впуска, позволяющую влиять на характери­стику крутящего момента двигателя. Каждый впускной канал имеет собственный порт на впускном трубопроводе. Это позволяет под­ключать один, два или три впускных канала, в зависимости от потребностей двигателя.(см. рис. «Впускные и выпускные каналы с различными настройками регулируемой системы впуска» ).

Читать еще:  Что такое система питания дизельного двигателя

Зажигание в роторном двигателе

Поскольку камеры сгорания роторных дви­гателей имеют вытянутую форму, что небла­гоприятно для зажигания, на современных роторных двигателях устанавливаются две независимые свечи зажигания, со сдвигом момента зажигания во времени. При этом за­паздывающая свеча находится впереди опе­режающей свечи в направлении вращения.

Впрыск топлива в роторном двигателе

Топливо подается в двигатель через топлив­ные форсунки с несколькими отверстиями, установленными в системе впуска, что обе­спечивает достаточное распыление топлива. В двигателе Renesis (Mazda), каждый ротор имеет три топливные форсунки с различным количеством отверстий. Каждая форсунка «обслуживает» один из трех каналов впуска.

Система охлаждения роторного двигателя

Роторный двигатель обычно имеет жидкост­ную систему охлаждения. Расположение ка­налов охлаждения в корпусе ротора адапти­ровано к неравномерной тепловой нагрузке, испытываемой рабочей камерой трохоидальной формы. На стороне впуска, испытываю­щей небольшую тепловую нагрузку, количе­ство каналов охлаждения меньше, чем на стороне выпуска, тепловая нагрузка которой значительно выше. Такое расположение кана­лов охлаждения предотвращает повреждение и деформацию камеры и роторов.

Современное состояние роторно-поршневого двигателя

На пути массового применения двигателя встали значительные технические трудности:
— отработка качественного рабочего процесса в камере неблагоприятной формы;
— обеспечение герметичности уплотнения рабочих объемов;
— проектировка и создания конструкции корпусных деталей, которые надежно прослужат весь жизненный цикл работы двигателя без коробления при неравномерном нагрева этих деталей.
В результате огромной проделанной научно-исследовательской и опытно-конструкторской работы этим фирмам удалось решить почти все наиболее сложные технические задачи на пути создания РПД и выйти на этап их промышленного производства.

Первый массовый автомобиль NSU Spider с РПД начала выпускать фирма NSU Motorenwerke. Вследствие частых переборок двигателей из-за выше сказанных технических проблем на раннем этапе развития конструкции двигателя Ванкеля, взятые NSU гарантийные обязательства привели ее к финансовому краху и банкротству и последовавшему слиянию с Audi в 1969 году.
Между 1964 и 1967 годом произведено 2375 автомобилей. В 1967 году Spider был снят с производства и заменён на NSU Ro80 с роторным двигателем второго поколения; за десять лет производства Ro80 выпущено 37398 машин.

Наиболее успешно с данными проблемами справились инженеры фирмы Mazda. Она и остается единственным массовым производителем машин с роторно-поршневыми двигателями. Доработанный мотор серийно начался ставить на автомобиль Mazda RX-7 с 1978 года. С 2003 преемственность приняла модель Mazda RX-8, она и является на данный момент массовой и единственной версией автомобиля с двигателем Ванкеля.

Самостоятельное изготовление двигателя

Одним из самых проблематичных моментов при выполнении любого роторного движка — это воссоздание эффективной уплотняющей системы, необходимой для создания замкнутого объёма в рабочих камерах рассматриваемого типа решений. Пока что в схемах это считается одним из главных препятствий. Тут предстоит выполнить сложную в изготовлении уплотнительную систему.

Дабы набить руку и набраться положительного опыта в данном занятии, можно попробовать выполнить компактный рабочий вариант решения рассматриваемого типа непосредственно с «нуля».

Ориентировочный показатель мощности одной из роторных секцией будет находиться в районе сорока лошадиных. А значит, движок рассматриваемого типа, скажем, с двумя секциями, достигнет показателя в восемьдесят лошадиных сил. И так далее по схожему принципу.

В целом, изготовление такого типа решений всегда идет с оптимальным ритмом, при том что можно и вовсе отказаться от сторонних элементов. Как правило, корпусная часть таких решений выполняется из конструкционной стали легированного типа, подвергнутой упрочнению термохимического типа и стойкой к высоким температурам.

Как вариант, оптимальной твердостью поверхностного слоя можно подобрать показатель в районе семидесяти HRC. По части глубины, термически упроченный слой находится в районе полтора миллиметров. Аналогичным образом обрабатываются и до того же показателя твердости и устойчивости к износам уплотнения радиального и торцевого типа.

Такое решение обладает воздушным охлаждением, а смазочное масло будет поступать к камере сжатия посредством двух специальных форсунок. То есть, в данном случае не потребуется смешивать масло и бензин, как это бывает в двухтактных вариациях.

Движок рассматриваемого типа ставят на токарный станок, где он в течение нескольких часов подвергается обкатке без воздействиями температуры. Таким образом, можно оценить эффективность уплотнений и герметичность выполняемых секций как достаточно приемлемую.

Впоследствии можно измерить уровень давления, который наблюдается в зоне сжатия.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector