0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель вальтера принцип работы

  • 1 История
  • 2 семейства двигателей Walter
  • 3 двигателя
    • 3.1 Радиальный
    • 3.2 Встроенный
    • 3,3 V12
    • 3.4 Горизонтально-противоположный
    • 3.5 Турбореактивный двигатель
    • 3.6 Турбовинтовой
  • 4 Двигатели построены по лицензии
  • 5 См. Также
  • 6 Ссылки
    • 6.1 Библиография
  • 7 Внешние ссылки

Йозеф Вальтер основал компанию в 1911 году, чтобы производить мотоциклы и трехколесные мотоциклы. Производство автомобилей началось в 1913 году: сначала собственные модели, а затем Fiat 508 , 514 , 522 и 524 по лицензии.

К 1926 году Вальтер был четвертым по величине производителем автомобилей в Чехословакии по объему продаж. В 1929 году он по-прежнему занимал четвертое место, а производство достигло 1498 автомобилей в год. К 1932 году производство Walter упало до 217 автомобилей в год. В 1933 году эта цифра увеличилась до 474, но снова упала до 102 в 1936 году и только до 13 в 1937 году.

Вальтер прекратил производство автомобилей в 1954 году.

С начала 1920-х годов Walter также производил по лицензии авиационные двигатели BMW , а также собственное семейство радиально-поршневых двигателей с воздушным охлаждением. В 1930-х годах Уолтер также производил двигатели Bristol Jupiter , Mercury и Pegasus по лицензии, а затем создал свои собственные рядные четырех- и шестицилиндровые двигатели с перевернутым воздушным охлаждением, а в 1936 году — перевернутый V12 с воздушным охлаждением . Авиадвигатели Walter перед Второй мировой войной использовались в ВВС 13 стран .

Во время Второй мировой войны Вальтер производил двигатели Argus по лицензии для Германии. Производство турбореактивного двигателя BMW 003 находилось на стадии подготовки, но так и не было произведено.

Завод Walter пережил войну, и в 1946 году компания была национализирована как Motorlet np. Она производила поршневые двигатели по советской лицензии, а в 1952 году приступила к производству реактивного двигателя Walter M-05. Это был советский двигатель « Климов ВК-1» , созданный на базе « Роллс-Ройс Нене» , на котором устанавливался МиГ-15 , и который экспортировался во многие страны. Компания производила серию двигателей советской разработки в 1950-х и 1960-х годах, хотя производство поршневых двигателей было закрыто и переведено в Avia в 1964 году.

В 1995 году компания была приватизирована как Walter as , а в 2005 году подразделение по производству авиационных двигателей стало Walter Aircraft Engines . В июле 2006 года его приобрела чешская инвестиционная компания FF Invest. В марте 2007 года было объявлено, что Walter Aircraft Engines объединится с авиационным подразделением Avia. Компания также была объединена с компанией по точному литью PCS.

В сентябре 2007 года было объявлено, что активы компании (не включая ее нынешний завод в Праге) будут приобретены GE Aviation . Сделка была завершена в июле 2008 года. Интерес GE к Walter связан с желанием первой более агрессивно конкурировать с Pratt & Whitney на рынке малых турбовинтовых двигателей ; Pratt & Whitney занимает здесь доминирующую долю рынка. Уолтер создает двигатель M601, который GE надеется усовершенствовать и противопоставить Pratt & Whitney PT6. В настоящее время Уолтер производит 120 двигателей M601 в год; GE намерена увеличить производство к 2012 году до 1000 двигателей в год. Однако этого так и не удалось достичь, так как в 2019 году GE Aviation Czech произвела менее 100 самолетов M601 и H-Series.

Содержание

Новизной двигателей Вальтера было использование в качестве энергоносителя и одновременно окислителя концентрированной перекиси водорода, разлагаемого с помощью различных катализаторов, главным из которых был перманганат натрия, калия или кальция. В сложных реакторах двигателей Вальтера в качестве катализатора применялось и чистое пористое серебро.

При разложении перекиси водорода на катализаторе выделяется большое количество теплоты, причём образующаяся в результате реакции разложения перекиси водорода вода превращается в пар, а в смеси с одновременно выделяющимся во время реакции атомарным кислородом образует так называемый «парогаз». Температура парогаза, в зависимости от степени начальной концентрации перекиси водорода, может достигать 700 С°—800 С°.

Концентрированная примерно до 80-85 % перекись водорода в разных немецких документах носила название «оксилин», «топливо Т» (T-stoff), «аурол», «пергидроль». Раствор катализатора имел название Z-stoff.

Топливо для двигателей Вальтера, состоявшее из T-stoff и Z-stoff, называлось однокомпонентным, поскольку катализатор не является компонентом.

Читать еще:  Что такое экспортный двигатель

В других типах двигателей Вальтера использовалось двухкомпонентное топливо, состоящее из T-stoff и, например, С-stoff (смесь 30 % гидразина, 57 % метанола, 13 % воды). Например, на такой смеси работал двигатель Walter HWK RI-203 (см. ниже).

Температура в камере сгорания двигателей, использовавших T-stoff и С-stoff или иные жидкие горючие (например метанол, нефть, декалин,) была значительно более высокой, чем температура паро-кислородного парогаза и достигала температур камеры сгорания ЖРД, использующих в качестве окислителя азотную кислоту или тетраоксид азота. КПД двигателей Вальтера с использованием выделяющегося при реакции разложения перекиси водорода кислорода путём сжигания в нём жидких органических топлив был значительно выше, чем КПД простой реакции разложения T-stoff на катализаторе.

В ЖРД двигателях Вальтера парогаз T-stoff и Z-stoff, образующийся в реакторе, которым являлась часто сама камера сгорания (разложения), создавал реактивную тягу, так же как и газы горения T-stoff и С-stoff. В некоторых типах двигателя Вальтера T-stoff не соединялся непосредственно с С-stoff, а сначала разлагался с помощью Z-stoff, и только затем горячий окислительный парогаз окислял различные С-stoff-горючие в камере сгорания.

В двигателях Вальтера ПГТУ образующийся в реакторе парогаз T-stoff и Z-stoff или T-stoff и С-stoff направлялся на рабочие лопатки турбины, где происходило преобразование химической энергии топлива в механическую энергию вращающегося вала, позволяющего передавать энергию, например, на двигательные винты подводной лодки или торпеды.

Более сложный цикл, необходимый для бесследных ПГТУ подводных лодок или торпед, включал в себя сжигание в T-stoff солярового масла, образующийся газ сгорания совершал работу в турбине и затем направлялся в конденсатор, где конденсировался в водяной пар, а углекислый газ сжижался и выбрасывался из подводной лодки при помощи барботирования через мелкие отверстия специального выпускного устройства. Устремляясь к поверхности воды, мелкие пузырьки углекислого газа растворялись в воде, чем и достигалась практическая бесследность подводной лодки.

В некоторых циклах Вальтера турбина не вращала винты через механический редуктор, а приводила в действие электрогенератор, который уже приводил в действие ходовые электромоторы подводной лодки, а кроме того при необходимости и мог заряжать аккумуляторы ПЛ.

Принцип работы

Функцию поршня в РПД выполняет трехгранный ротор, преобразующий силу давления газов во вращательное движение эксцентрикового вала. Движение ротора относительно статора обеспечивается парой шестерен, одна из которых закреплена на роторе, а вторая — на боковой крышке статора.

Конфигурация рабочих поверхностей ротора и статора — эпитрохоидальная. Рабочая поверхность статора имеет износостойкое покрытие. В вершинах ротора установлены специальные уплотнения, на рабочих поверхностях — выемки, выполняющие роль камер сгорания. Вал вращается в подшипниках, размещенных на корпусе, и имеет цилиндрический эксцентрик, на котором вращается ротор.

Шестерня неподвижно закреплена на корпусе двигателя. С ней в зацеплении находится шестерня ротора. Взаимодействие этих шестерен обеспечивает орбитальное движение ротора относительно корпуса, в результате которого образуются три разобщенных камеры переменного объема. Передаточное отношение шестерен 2:3, поэтому за один оборот эксцентрикового вала ротор поворачивается на 120 градусов . За полный оборот ротора в каждой из камер совершается полный четырехтактный цикл. Крутящий момент получается в результате действия газовых сил через ротор на эксцентрик вала.

Между статором и ротором образуются три камеры, аналогичные надпоршневому пространству ДВС. Процесс впуска начинается, когда вершина ротора пересекает кромку впускного окна, после чего объем камеры возрастает и туда поступает горючая смесь. Когда следующая вершина ротора перекрывает впускное окно, смесь начинает сжиматься, и в момент наибольшего сжатия подается искра — начинается рабочий ход. Затем открывается выпускное окно и отработавшие газы покидают пространство камеры.

Таким образом за один оборот ротора в двигателе происходят три цикла, что делает ненужным использование уравновешивающих устройств, особенно в двухсекционных конструкциях, получивших подавляющее распространение.

Принцип работы

Данный ДВС действует следующим образом. Ротор, насаженный на эксцентриковый вал через подшипники, приводится в действие от силы давления газов, что образовалась в результате сгорания топливновоздушной смеси. Ротор двигателя относительно статора посредством пары шестерен. Одна из них (большого размера) находится на внутренней поверхности ротора. Вторая (опорная) имеет меньшие размеры и намертво прикреплена к боковой крышке двигателя. Благодаря взаимодействию шестерен, ротор производит эксцентричные круговые движения. Таким образом, его грани соприкасаются с внутренней поверхностью камеры сгорания.

Читать еще:  Двигатель 1д12бмс1 технические характеристики

В результате между корпусом двигателя и ротором образуется несколько изолированных камер переменного объема. Их количество всегда составляет 3. В данных камерах происходит процесс сжатия смеси, ее горение, расширение газов (которые впоследствии оказывают давление на рабочую поверхность ротора) и их удаление. В результате воспламенения топлива, ротор приводится в действие, передавая усилия крутящего момента на эксцентриковый вал. Последний устанавливается на подшипниках и далее передает мощность на узлы трансмиссии. А уже затем момент сил двигателя Ванкеля идет на колеса по классической схеме – посредством карданной передачи и полуосей к ступицам. Таким образом, в роторном моторе работают одновременно несколько механических пар. Первая отвечает за движение ротора и состоит из нескольких шестерен. Вторая де преобразует движение ротора в обороты эксцентрикового вала.

Передаточное отношение статора (корпуса) и шестерен всегда стабильное и составляет 3:2. Таким образом, ротор успевает провернуться за полный оборот вала на 120 градусов. В свою очередь, за полный оборот ротора производится четырехтактный цикл работы двигателя внутреннего сгорания в каждой из трех камер, образуемых гранями.

Боевая часть

Боевой заряд, расположенный в головной части корпуса состоит из заряда взрывчатого вещества и взрывателей. На ранних моделях торпед, применявших в Первую мировую войну, использовалось однокомпонентное взрывчатое вещество (например, пироксилин).

Для подрыва применялся примитивный детонатор, установленный в носовой части. Срабатывание ударника обеспечивалось только в узком диапазоне углов, близком к перпендикулярному попаданию торпеды в цель. Позднее стали применятся усы, связанные с бойком, которые расширили диапазон этих углов.

Дополнительно стали устанавливаться инерционные взрыватели, срабатывавшие в момент резкого замедления движения торпеды. Использование таких детонаторов потребовало введения предохранителя, которым стала крыльчатка, раскручиваемая потоком воды. При использовании электрических взрывателей крыльчатка соединяется с миниатюрным генератором, заряжающим конденсаторную батарею.

Взрыв торпеды возможен только при определенном уровне заряда батареи. Подобное решение обеспечило дополнительную защиту атакующего корабля от самоподрыва. К моменту начала Второй мировой стали применяться многокомпонентные смеси, обладающие повышенной разрушающей способностью.

Так, в торпеде 53-39 используется смесь тротила, гексогена и алюминиевой пудры.

Применение систем защиты от подводного взрыва привело к появлению взрывателей, обеспечивавших подрыв торпеды вне зоны защиты. После войны появились модели, оснащенные ядерными боеголовками. Первая советская торпеда с ядерной боеголовкой модели 53-58 была испытана осенью 1957 года. В 1973 году ее сменила модель 65-73 калибра 650 мм, способная нести ядерный заряд мощностью 20 кт.

Асинхронное оборудование

Конструкции, работающие от непостоянного тока, называют асинхронными. Бесщеточный альтернатор можно использовать как в качестве генератора, так и в роли мотора. Функциональный аппарат быстро переходит из режима двигателя к графику источника бесперебойной энергии.

Технические особенности

У асинхронного альтернатора медленнее, чем у синхронного, вертится статорное поле. Чтобы изменить функцию мотора на генератор, стоит увеличить движущуюся скорость ротора. Вращающийся элемент перестает следовать за магнитным полем и меняет направление.

Процесс возникает при подключении группы конденсаторов к сети. Детали начинают заряжаться, накапливают энергию электрополей. У фазы есть заряд, противоположный полюсу источника. Ротор замедляется, что приводит к производству тока.

Асинхронные конструкции потребляют мощность, которая нужна для формирования магнитного поля. В двигатель поступает электрическая энергия, а на выходе получают механическую. Быстрота перехода из одного режима в другой зависит от особенностей вращения или торможения.

За счет отсутствия щеток модели называют бесщеточными. Ротор асинхронного альтернатора делают в форме «беличьего колеса». Сооружение в виде решетки цельной тормозит детали, создавая эффект скольжения. При механическом импульсе за счет остатков излучения в элементах возникают поля, которые динамически взаимодействуют.

Типы генераторов

Асинхронные альтернаторы различают по рабочим параметрам. У конструкций роторы бывают фазные или короткозамкнутые. Из-за сложного строения у первого вида дорогое обслуживание. У второго подвижные детали в форме цилиндра состоят из палочек и колец, немного напоминает колесо белки.

Асинхронные генераторы применяют при работе с техникой с рекуперативным или реостатным типом торможения (транспортеры, краны подъемные). Электростанции используют в промышленном оборудовании, которое нетребовательно к качеству получаемой энергии. Бесщеточные альтернаторы – мощное устройство для зарядки, которое обеспечит подпитку аккумуляторов в автомастерских или функционирование сварки. В полевых условиях модели станут недорогим источником энергии, работающими от дизельных двигателей.

Читать еще:  Двигатель 4a91 сколько масла

Сильные и слабые стороны

У асинхронных альтернаторов нет обмотки двигающихся компонентов, поэтому не нужны щетки. Подвижный элемент визуально напоминает маховик. Для бесперебойного функционирования генератору хватит конденсаторов и магнитных полей. За счет простоты конструкции оборудование надежнее синхронного, долго не выходит из строя.

Из-за отсутствия медной обмотки не нужно охлаждать детали и менять щетки. В альтернаторы асинхронные не попадает мусор, влага и пыль, поэтому у генераторов увеличивается класс защиты. Бесщеточные модели не втягивают струи воды.

Из-за простоты строения у асинхронных альтернаторов масса и размеры ниже, чем у синхронных аналогов. Техника занимает меньше места, чем щеточные виды. Оборудование не боится коротких замыканий, что хорошо во время сварки.

Асинхронному альтернатору противопоказаны пусковые перегрузки. Во время процесса напряжение становится нестабильным. Разрешаемый предел – 10%, но в отдельных случаях отклонения намного выше. В конструкции не предусмотрели автоматический регулятор, поэтому незапланированные скачки способны уничтожить точное оборудование и дорогостоящую технику.

Профессионалы советуют предупредить проблему покупкой и монтажом стартового усилителя, который изменяет характеристики выходящей энергии. Производители качественных генераторов улучшают параметры аппаратов, поэтому моторы часто обеспечивают стабильные обороты при трансформации напряжения.

Виды импеллеров и их особенности

Различают два вида импеллеров:

  1. Толкающий, когда двигатель расположен за ротором;
  2. Тянущий — классический вариант «двигатель-ротор».

Стальные винты или лопасти изготавливают методом литья или штамповки (пресс с усилием до 40 тонн профилирует лопатки). Заготовки проходят комплекс механической обработки для снятия заусенцев, зазубрин и прочих дефектов. Применяют для этого токарно-фрезеровочные комплексы mazak и фрезеровочные машины MIKRON. После чего лопатки проходят термическую и обработку, отпуск и нормализацию. После чего проводится комплекс испытаний на прочность и твердость.

Благодаря особой конструкции импеллера удается достичь минимального шума и отсутствие потери мощности работающей турбины. Корпус импеллерного двигателя обладает меньшими размерами, чем пропеллерные, при этом полезная мощность остается та же. Крыльчатка (закреплена на роторе) представляет собой многолопастной винт в кольцевом канале. Воздух, затянутый в импеллер под большим давлением, имеет какой-то вес, поэтому в результате движения воздушных масс возникает реактивная тяга. Усилие двигает машину или перемещает рабочую среду.

Основная сфера применения импеллеров

Импеллеры применяются в самых разных направлениях. Это не только крупные промышленные двигатели турбин, градирен или компрессоров, но и небольшие механизмы, например, аквариумные фильтры, помпы, двигатели посудомоечных машин, водометы.

Импеллер — механизм для создания реактивной тяги. Принцип используется в авиационных двигателях. Поршневые механизмы давно отошли на задний план, так как реактивные двигатели более легкие, экономичные в работе, работают на более дешевом топливе. Направляющие лопатки могут регулироваться на разных механизмах. Импеллер — механизм, способный обеспечивать максимальную тягу при минимальном диаметре вентилятора, поэтому спрос на такие механизмы очень высок. В настоящее время лопастные высокооборотные электродвигатели нашли широкое применение в авиамоделировании категории F4 (модель копирует реактивный самолет).

Импеллерные двигатели также применяются для двигателей гидроциклов, катеров и прочего водного транспорта. Система придает более высокую тягу и необычайную эффективность, немыслимый разгон и максимальную производительность. Лопаточные элементы — расходный материал, при этом можно заменить только лопастной узел.

Импеллеры применяют как основной механизм насосного оборудования. Такие насосы применяют в пищевой, фармацевтической, косметической, химической промышленности. Основная конструктивная особенность — ротор с резиновыми или пластиковыми лопастями, заключенные в овальный корпус. Такие машины обладают свойствами самовсасывания до 5 метров, имеют реверс (то есть перекачивают жидкость в обе стороны, легко меняется направление перекачивания), допускается перекачивать жидкости с твердыми включениями, для вязких (с пределами вязкости среды до 50000 сСт) и прочих сред. Наиболее часто это насосы-дозаторы, так как производительность жестко связано с частотой вращения. Импеллерные насосы имеют ряд недостатков: ограничение по температуре, а также ограничение по перекачиваемым средам. Оборудование относится к дорогостоящему и технически сложному, поэтому часто используют альтернативные варианты.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector