Давление в картере двухтактного двигателя
Двухтактный двигатель
Двухта́ктный дви́гатель — двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня [1] . Такты сжатия и рабочего хода в двухтактном двигателе (за исключением двигателя Ленуара) происходят так же, как и в четырёхтактном (а значит, возможна реализация тех же термодинамических циклов, кроме цикла Аткинсона), но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мёртвой точки. Процесс удаления из цилиндра отработавших газов и наполнения его свежей горючей смесью в двухтактном двигателе называется продувкой.
Чем отличается двухтактный двигатель от четырехтактного?
За каждый поворот коленвала на 180° совершается два такта (разные, в зависимости от типа двигателя). Отработка процесса двухтактного ДВС осуществляется за один оборот, а четырехтактного – за два оборота коленвала. Непонятно? Рассмотрим вопрос подробнее.
Современный мотор достаточно сложен с инженерной точки зрения. Процессы обеспечиваются различными вспомогательными механизмами, их работа должна быть синхронизирована. Кроме того, компоненты двигателя имеют определенную массу, соответственно присутствует инерция.
Трущиеся детали замедляются сопротивлением. Это замедляет процесс и отбирает дополнительную мощность. Все поправки надо учитывать при проектировании мотора.
Запрограммировать алгоритм управления сложно, условия эксплуатации постоянно меняются. Если последовательность смены циклов даст сбой – произойдет потеря мощности или остановка двигателя. Поэтому для бесперебойной работы нужно так много приспособлений вокруг пары: поршень, цилиндр.
Логика подсказывает, что при меньшем количестве тактов, управление можно сделать проще. Именно поэтому инженеры по-прежнему развивают направление двухтактных ДВС.
Чтобы понять разницу между двухтактным и четырехтактным двигателем, рассмотрим организацию работы последнего.
Особенностью конструкции четырехтактных моторов является разделение клапанов на входе и выходе.
Впуск
По инерции, поршень движется вниз, создавая вакуум в камере сгорания. В этот момент через открытый впускной клапан в полость проникает готовая топливовоздушная смесь.
Сжатие
Поршень (опять же по инерции) движется к высшей точке. Оба клапана герметичны, горючая смесь сжимается. Это первое применение хорошей компрессии. Смесь не проникает в картер.
Рабочий ход
Искра свечи, происходит взрыв. Стремительно расширяющиеся газы толкают поршень вниз. Это второе применение компрессии. Чем она выше, тем больше энергии от взрыва будет передано на коленвал.
Выпуск
Поршень (снова по инерции) движется к верхней мертвой точке. В открытый выпускной клапан выдавливаются отработанные газы. При достижении максимальной высоты, поршень готов к всасыванию очередной порции воздушной смеси.
Эта схема работы двигателя характерна для одноцилиндрового мотора. При многоцилиндровой компоновке (собственно, другой на автомобилях практически нет), каждый следующий поршень сообщает крутящий момент, замещая инерцию маховика.
Поэтому коленвал вращается более равномерно. А в каждом отдельно взятом цилиндре, рабочий цикл происходит именно так.
Четырехтактный двигатель работает тише, ровнее. Система смазки отделена от топливной системы – улучшена экология. При этом мотор уступает в мощности двухтактнику аналогичного объема, поскольку на один рабочий цикл приходится два оборота коленвала.
Сравнение двухтактного и четырёхтактного двигателя
Рабочий цикл двухтактного двигателя происходит за один оборот коленчатого вала, что позволяет снимать в 1,5-1,7 раза бо́льшую мощность с того же рабочего объёма при тех же оборотах двигателя. Это особенно актуально при создании тяжелых тихоходных двигателей средних и тяжёлых судов, соединяемых непосредственно с валом гребного винта регулируемого шага, а также в поршневой авиации, где для эффективной работы воздушного винта также требуются сравнительно низкие рабочие обороты, что позволяет устранить из конструкции редуктор привода на винт.
В качестве автомобильного или, тем более, мотоциклетного такой двигатель менее выгоден, тем не менее также позволяет создать сравнительно компактные, но мощные силовые агрегаты, нашедшие применение в мототехнике и, ранее, микролитражных и малолитражных легковых автомобилях (с кривошипно-камерной продувкой, рабочим объёмом обычно до 1,5 — 1,7 литра), а также на грузовых автомобилях и автобусах (с прямоточной продувкой, рабочим объёмом обычно от 4 литров и более).
Из-за вдвое большей частоты рабочих тактов и за счет омывания деталей, обеспечивающих выхлоп, удвоенным количеством выхлопных газов, эти детали двигателя находятся в более напряжённом тепловом режиме. В двигателях большой мощности обязательно используется принудительное охлаждение поршней.
За счёт вдвое меньшего количества нерабочих ходов поршня в каждом рабочем цикле вдвое уменьшаются потери на трение.
В двухтактных двигателях необходимо искать компромисс между качеством продувки и потерями свежего заряда. В отличие от четырёхтактного двигателя, где между тактами выпуска и впуска поршень находится в верхней мёртвой точке, почти полностью вытесняя выхлопные газы, в двухтактном продувка происходит во всём объёме цилиндра сразу, причём за достаточно короткое время. При этом невозможно полностью исключить смешивание свежего заряда с выхлопными газами. Особенно проблема потерь заряда актуальна для карбюраторных двигателей, так как в них в цилиндр во время продувки поступает готовая рабочая смесь, что приводит к увеличенному расходу топлива и большому количеству несгоревших углеводородов в выхлопе. В целом, двухтактные двигатели имеют в 1,5-2 раза больший расход воздуха, из-за чего могут требовать более сложных воздушных фильтров. Также, в отличие от четырёхтактного двигателя, при использовании турбонаддува энергия поступающего из турбокомпрессора воздуха не передаётся через поршень на коленчатый вал двигателя, в то же время, выхлопные газы при выпуске не оказывают противодавления на поршень.
По конструкции двухтактный двигатель может быть как более простым (при контурной кривошипно-камерной и, отчасти, клапанно-щелевой продувке), так и более сложным, чем четырёхтактный (при прямоточной продувке).
Мифы о двухтактных дизельных моторах
Существует несколько распространенных мифов касательно двухтактных двигателей:
- Слишком медленная работа. В действительности современные моторы с турбонаддувом гораздо эффективнее предыдущих моделей.
- Такие моторы слишком громкие. Чтобы этого избежать, необходима правильная настройка двигателя. При правильном выполнении всех настроек работа мотора происходит немногим громче бензинового аналога. Высокий уровень шума свидетельствует о неправильной настройке мотора или его неисправности. Для старых моделей высокий уровень шума — характерная черта, создание появление аккумуляторных систем с высоким давлением существенно снизило уровень шума.
- Покупать дизель выгоднее бензина. Это так, но лишь отчасти. Несколько лет назад дизельное топливо стоило намного дешевле бензина, однако сегодня разница составляет всего 10-20%. Основная экономичность заключается в способности теплотворной способности горючего.
- Такие моторы плохо заводятся зимой. Раньше проблемы с ними действительно возникали. Однако современные автомобили с дизельными двигателями оснащены быстрым запуском, что снижает время на ежедневные подготовки к поездкам.
Срок службы дизеля превышает бензиновые агрегаты. Он может достигать 400-600 тыс. км.
Каждый двухтактный дизельный двигатель имеет одну отличительную особенность — через окна цилиндров впускается воздух и устраняются отработавшие газы. Когда они выходят через клапан в цилиндре, а воздух поступает через окна, система такой очистки называется клапанно-щелевой.
Подобные системы очистки имеют одну особенность — в цилиндре остается только часть воздуха. Поднимаясь вверх, он частично выходит за пределы мотора. Такую очистку еще называют прямоточной. Она обеспечивает максимальную эффективность очистки двигателя от продуктов сгорания.
Помимо прямоточной продувки существует и петлевая, однако она отличается меньшим качеством очистки. Именно поэтому для современных автомобилей она используется нечасто. Рабочие ходы такого агрегата выполняются в два раза чаще, однако на мощности это сказывается незначительно (она увеличивается в 1,5-1,7 раза). Это объясняется наличием продувки, а также тем, что внутри цилиндра происходит более короткий ход.
Работа 4 тактного двигателя
Как уже было сказано, работа 4 тактного двигателя состоит из двух оборотов коленвала или, еще можно сказать, четырех тактов поршня.
Работа 4 тактного двигателя происходит таким образом:
- (впуск). Поршень продвигается в нижнюю сторону, что приводит к открытию клапана впуска. В итоге горючая смесь оказывается в цилиндре, куда она попадает из карбюратора. По достижению поршнем нижнего положения совершается закрытие клапана впуска.
- (сжатие). Поршень передвигается в верхнюю сторону, что провоцирует сжимание горючей смеси. После того, как поршень приближается к верхней мертвой точке, совершается возгорание сжатого поршнем бензина.
- (расширение). Происходит возгорание бензина, в результате которого он сгорает – это приводит к растяжению горючих газов и, соответственно, к движению поршня вниз (два клапана оказываются закрытыми).
- (выпуск). По инерции коленчатый вал продолжает кругооборот вокруг своей оси, а поршень – продвигаться вверх. Вместе с этим происходит открытие клапана выпуска, откуда выхлопные газы попадают в трубу. Когда поршень доходит до верхней мертвой точки, совершается закрытие клапана впуска.
По окончанию работы 4 тактного двигателя четыре такта проходят заново.
Двухтактный двигатель
Двухта́ктный дви́гатель — двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня [1] . Такты сжатия и рабочего хода в двухтактном двигателе (за исключением двигателя Ленуара) происходят так же, как и в четырёхтактном (а значит, возможна реализация тех же термодинамических циклов, кроме цикла Аткинсона), но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мёртвой точки. Процесс удаления из цилиндра отработавших газов и наполнения его свежим зарядом в двухтактном двигателе называется продувкой.
Рабочий цикл двухтактного двигателя происходит за один оборот коленчатого вала, что позволяет снимать в 1,5-1,7 раз бо́льшую мощность с того же рабочего объёма при тех же оборотах двигателя. Это особенно актуально при создании низкооборотных двигателей средних и тяжёлых судов, позволяя напрямую соединять двигатель с гребным валом, вращающим винт регулируемого шага.
Из-за вдвое большей частоты рабочих тактов и за счет омывания деталей, обеспечивающих выхлоп, бо́льшим количеством горячих газов, эти детали двигателя находятся в более напряжённом тепловом режиме. В двигателях большой мощности обязательно используется принудительное охлаждение поршней. С другой стороны, за счёт вдвое меньшего количества нерабочих ходов поршня в одном рабочем цикле уменьшаются потери на трение.
В двухтактных двигателях необходимо искать компромисс между качеством продувки и потерями свежего заряда. В отличие от четырёхтактного двигателя, где между тактами выпуска и впуска поршень находится в верхней мёртвой точке, почти полностью вытесняя выхлопные газы, в двухтактном продувка происходит во всём объёме цилиндра сразу, причём за достаточно короткое время. При этом невозможно полностью исключить смешивание свежего заряда с выхлопными газами. Особенно проблема потерь заряда актуальна для карбюраторных двигателей, так как в них в цилиндр во время продувки поступает готовая рабочая смесь. В целом двухтактные двигатели имеют в 1,5-2 раза больший расход воздуха, из-за чего могут требовать более сложных воздушных фильтров. Также в отличие от четырёхтактного двигателя при использовании турбонаддува энергия поступающего из турбокомпрессора воздуха не передаётся через поршень на коленчатый вал двигателя, в то же время выхлопные газы при выпуске не оказывают противодавления на поршень.
По конструкции двухтактный двигатель может быть как более простым (при контурной кривошипно-камерной продувке), так и более сложным, чем четырёхтактный.
В то время как в четырёхтактном двигателе всасывание свежего заряда происходит за счёт движения поршня из верхней мёртвой точки вниз при открытом впускном клапане, а опорожнение — вверх при открытом выпускном, в двухтактном свежий заряд должен поступать в цилиндр под давлением, вытесняя отработавшие газы. Для создания давления требуется нагнетатель. В маломощных двигателях для этой цели используется нижняя часть поршня и полость картера — такая схема называется кривошипно-камерной продувкой.
Кривошипно-камерная продувка
При использовании кривошипно-камерной продувки воздух или горючая смесь поступает в цилиндр через полость картера двигателя, куда всасывается при движении поршня вверх, при движении поршня вниз избыточное давление обеспечивает продувку. При такой схеме возможно создание двигателя, состоящего из минимального количества деталей, так как ему не требуется продувочный насос. Чтобы не допустить потерь заряда через впускной трубопровод в атмосферу, перед входом в картер может устанавливаться лепестковый клапан либо насаженный на коленчатый вал дисковый золотник.
При использовании исключительно кривошипно-камерной продувки существуют определённые особенности, ограничивающие применение таких двигателей:
- Необходимо, чтобы полость кривошипной камеры конкретного цилиндра была герметична и, по возможности, чтобы коленвал занимал возможно больший объём и был обтекаем, чтобы как можно меньше влиять на газодинамику, а большой объём металла существенно утяжеляет вал. Каждую кривошипную камеру многоцилиндрового двигателя приходится уплотнять сальниками с каждой стороны каждой коренной шейки, что требует применения разборного коленчатого вала (как следствие, существенная потеря жёсткости вала по сравнению с цельным).
- Давление сжатия воздуха (смеси) в кривошипной камере невелико, что не позволяет получить и существенного давления продувочного воздуха (приходится увеличивать длительность фазы продувки, это вынуждает снижать эффективный рабочий объём — с потерей КПД).
- Двигатели такой конструкции не позволяют разместить в картере масляную ванну. Для смазки карбюраторного двигателя приходится подмешивать моторное масло в топливо. В случаях с упрощёнными конструкциями это может быть и достоинством, так как редуцирует систему смазки двигателя как таковую. В ряде двигателей применяется раздельная подача масла и бензина в двигатель, но все равно подача масла к парам трения происходит за счёт осаждения из горючей смеси, из-за чего у таких двигателей высокий расход масла, которое, вдобавок сгорает в цилиндре вместе с топливом. По этой же причине в двухтактных двигателях без системы смазки приходится использовать специальные масла, не содержащие присадок, способствующих закоксовыванию каналов и поверхностей деталей цилиндро-поршневой группы.
Дизельные и калоризаторные двигатели подобной конструкции также не имели масляной ванны в картере, так как пары масла, попадающие в цилиндр, могли бы привести к разносу. В них использовались схемы смазки с «сухим» картером. В двигателях простой конструкции, не рассчитанных на длительную непрерывную работу, применялась незамкнутая система смазки, где вместо масляного насоса часто применялась пневматические маслёнки — в этом случае требовалось регулярно сливать накапливающееся в картере отработавшее масло.
- На холостом ходу и при малых углах открытия дроссельной заслонки свежего заряда недостаточно для того, чтобы цилиндр мог полностью очиститься от выхлопных газов за один оборот коленчатого вала. Поэтому работа таких двигателей на холостом ходу часто неустойчива, после вспышки в цилиндре следует несколько холостых оборотов, при которых смесь в цилиндре слишком бедная, чтобы воспламениться от искры. Для дизельных и калоризаторных двигателей такая особенность не характерна за счет иного способа организации процесса горения и наполнения цилиндра при впуске только свежим воздухом.
С использованием продувочных насосов
На крупных многоцилиндровых двухтактных двигателях продувочный воздух сжимается в отдельном компрессоре (типа Рутс, либо пластинчатый), что практически полностью устраняет указанные выше недостатки. При этом, однако, воздух может подаваться в цилиндры через полость картера, которая в этом случае выполняет функции ресивера. Для создания давления продувки может использоваться и турбокомпрессор, но в этом случае в момент пуска в двигатель необходимо подавать сжатый воздух от внешнего источника либо использовать двухступенчатый наддув с механической ступенью (10Д100).
В ранних двухтактных двигателях также применяли поршневые компрессоры, работающие от одного коленчатого вала с двигателем. Например, на ПДП-дизеле ЮМО-203 Юнкерса в качестве продувочных использовались особые квадратные поршни, установленные на траверсах поршней верхнего ряда.
В поршневых двигателях внутреннего сгорания большое значение имеет качественная очистка объёма цилиндра от отработавших газов. В бензиновых двигателях остатки отработавших газов приводят к преждевременному воспламенению из-за высокой температуры. В любых двигателях плохая очистка ведёт к снижению максимальной мощности и ухудшению качества сгорания топлива. Так как продувка происходит через весь объём цилиндра при нахождении поршня (или поршней) вблизи нижней мёртвой точки, качественно очистить цилиндр от отработавших газов гораздо сложнее. Улучшения качества продувки можно достичь двумя путями: оптимизацией траектории движения свежего заряда при продувке либо путём подачи избыточного количества продувочного воздуха, который будет выброшен в выхлопную трубу вместе с отработавшими газами. Второй способ применим только при наличии нагнетателя и прямого впрыска топлива в цилиндр.
Так как в двухтактном двигателе все процессы происходят за один оборот коленчатого вала, есть возможность упростить конструкцию двигателя, заменив впускные и/или выпускные клапаны окнами в стенке цилиндра, которые будут перекрываться рабочим поршнем. Отсутствие клапанов и клапанных пружин позволяет двигателю работать при более высокой частоте вращения. Однако при этом возникает проблема асимметричного открытия и закрытия окон относительно мертвых точек: продувочные окна должны открываться позже выпускных, чтобы к моменту их открытия давление в цилиндре понизилось и выхлопные газы не проходили через впускные окна, но и закрываться тоже позже, иначе вытеснив отработавшие газы, свежий заряд будет выходить через выпускные окна, пока те не будут перекрыты. При этом, кроме возникновения потерь свежего заряда становится невозможным наддув.
Однопоршневые двигатели с щелевой (контурной) продувкой
Наиболее простая схема, при которой имеется один поршень, а газораспределение осуществляется за счёт перекрытия окон в стенке цилиндра. При этом и впускные, и продувочные окна располагаются в нижней части цилиндра, так как должны быть перекрыты во время сжатия и рабочего хода двигателя. При этом осуществить асимметричность фаз газораспределения без введения дополнительных элементов (золотников, гильз, клапанов и т.д.) невозможно.
Простота реализации контурной продувки (особенно при использовании подпоршневого пространства в качестве продувочного насоса, т. е. кривошипно-камерной) и дешевизна обеспечили очень широкое распространение таких двигателей на недорогих и легких устройствах. Их устанавливают на мопедах, мотоциклах, мотодельтапланах, мотопилах, газонокосилках, моторных лодках, используют в качестве пусковых двигателей, то есть там, где небольшая мощность делает относительно малозаметными дополнительные потери и играют существенную роль дешевизна и доступность конструкции. Такие двигатели применялись также на ряде автомобилей, например на DKW, СААБ, Trabant, Wartburg, Barkas в Европе, Suzuki Jimny в Японии.
Симметрия открытия впускных и выпускных окон позволяет достаточно просто организовать реверсирование двигателя — двигатель просто продолжает вращаться в том же направлении, в котором он вращался при запуске. Низкооборотные дизельные и калоризаторные двигатели с маховиками большой массы реверсируются при снижении оборотов: если при подходе к верхней мёртвой точке инерции маховика становится недостаточно для продолжения движения в том же направлении, при вспышке в цилиндре он начинает вращаться в обратном.
Существенно улучшить экономичность двухтактных двигателей с контурной продувкой позволяет применение системы впрыска топлива вместо карбюратора. Последние образцы мотоциклетных двухтактных двигателей с впрыском на 50 % экономичней карбюраторных, значительно превосходя при этом четырёхтактные моторы в литровой мощности [2] .
Для снижения потерь заряда применяется принцип Каденасси — аэродинамическая и акустическая настройка трактов с использованием отражённой волны выхлопных газов. Для этого в выхлопной системе двигателя устанавливаются акустический резонатор, который настраивается так, чтобы часть попавших в неё газов возвращалась обратно перед закрытием выпускных окон. Кроме того, она может эффективно работать в узкой части диапазона оборотов двигателя — а именно в той, на которой происходит резонанс газовой струи.
Так как газораспределительные окна находятся в нижней части цилиндра, возникают сложности с продувкой его верхней части. Для этого струю воздуха или горючей смеси направляют так, чтобы она двигалась вдоль контура цилиндра — поэтому такие схемы продувки называют контурными. Существует несколько разновидностей контурной продувки.
Поперечная схема продувки наиболее проста: в ней выпускные окна располагаются напротив впускных. Такая схема продувки на современных двигателях не применяется, так как влечёт за собой большие потери заряда из-за того, что он движется по траекториям разной длины и достигает выпускного окна через разное время.
Дефлекторная продувка схожа с поперечной, однако на поршне имеется выступ — дефлектор, имеющий форму козырька. Дефлектор направляет поток продувочного воздуха, не позволяя ему смешиваться с отработавшими газами. Кроме того, при малом открытии дросселя благодаря дефлектору рабочая смесь распределяется неравномерно: если со стороны выпускных окон свежий заряд сильно перемешан с отработавшими газами, то со стороны впускных окон горючая смесь более богатая и легко поджигается свечой. Таким образом, дефлекторная продувка лучше работает на холостом ходу и частичных нагрузках. Кроме того, цилиндры двигателей с дефлекторной продувкой проще в изготовлении, так как не критичны к форме впускного канала. Однако для высокофорсированных двигателей дефлекторная продувка не подходит. Сложная форма камеры сгорания при дефлекторной продувке ухудшает параметры рабочего процесса и повышает склонность бензиновых двигателей к детонации, а дизельных — к дымлению, что препятствует форсированию и повышению экономичности двигателей. К тому же поршень с толстым донышком склонен к перегреву. В связи с этим большинство производителей двухтактных двигателей отказались от дефлекторной продувки.
При фонтанной продувке продувочные и выпускные окна располагаются по всей окружности цилиндра в два ряда: сверху — выпускные, а под ними — продувочные окна. Такая схема позволяет несколько лучше продуть центральную область, однако из-за вихревого движения смеси увеличивается потеря свежего заряда.
Наиболее распространена петлевая схема продувки, при которой впускные окна расположены достаточно близко к выпускным, однако за счёт формы впускного трубопровода свежий заряд направляется вверх и в меньшей степени увлекается отработавшими газами.
Видео
На скутеры устанавливаются двухтактные двигатели 2Т или 4 Т. Какой лучше?
Анимация работы двухтактного двигателя.
Двухтактный двигатель Stihl (Штиль) в разрезе.
В этом видео — работа двухтакного двигателя.