0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что является топливом для реактивных двигателей

Различия между керосином и реактивным топливом

В зависимости от сорта реактивное топливо в основном представляет собой высокоочищенный керосин. Что такое керосин? Это топливо, которое существует уже более тысячи лет и сегодня потребляется по всему миру в размере 1,2 миллиона баррелей в день. Люди используют его для отопления, освещения и приготовления пищи.

кредит: the_guitar_mann / iStock / GettyImagesThe различия между керосином и реактивным топливом

Слово «керосин» происходит от греческого «керос», что означает воск, а керосин также исторически известен как парафин. Разница в керосине и парафине заключается в том, что парафин является компонентом керосина, а после завершения переработки нефти он остается в виде воскообразного остатка. Номенклатура дает ключ к пониманию связи между ними и помогает прояснить связь керосина с реактивным топливом.

Виды реактивных топлив

Реактивное топливо выпускают разных марок и состава. Реактивные топлива создают для самолетов дозвуковой авиации по ГОСТ 10227-86 и для сверхзвуковой авиации по ГОСТ 12308-89. Первый документ предусматривает изготовление пяти марок топлива: ТС-1, Т-1, Т-1С, Т-2 и РТ. По второму документу создают две марки топлива: Т-6 иТ-8В.
Наиболее часто сегодня применяются лишь две марки реактивного топлива:

  • ТС-1 (высшего и первого сортов)
  • РТ (высшей категории качества).

Главным сырьем для создания реактивных топлив является среднедистиллятная фракция нефти, процесс выкипания которой происходит при температуре от 140 до 280°C.
Рассмотрим более подробно все марки реактивных топлив:

  • ТС-1. Принимая во внимание количество меркаптанов и общей серы в дистиллятах, такое топливо производят методом прямой перегонки или в смеси с гидроочищенным или демеркаптанизированным компонентом, с получением смесевого топлива. Доля гидроочищенного продукта в смеси должна быть менее 70%, чтобы избежать существенного уменьшения противоизносных качеств. Метод гидроочистки допустимо использовать в том случае, если в керосиновых дистиллятах нефти объем общей и меркаптановой серы не соответствует стандартным нормативам, а метод демеркаптанизации используют, если стандарту не соответствует лишь объем меркаптановой серы
  • Т-1 получают вследствие прямой перегонки малосернистых видов нефти нафтенового основания, пределы выкипания которых составляют от 130 до 280 °С. В такой топливе находится много нафтеновых кислот. Оно отличается высоким уровнем кислотности, из-за чего оно проходит процедуру защелачивания с дальнейшей водной промывкой, чтобы удалить натриевые мыла нафтеновых кислот. Наличие значительного количества гетероатомных соединений, в основном кислородсодержащих, обусловливает, с одной стороны, относительно хорошие противоизносные свойства и достаточно приемлемую химическую стабильность топлива, с другой — низкую термоокислительную стабильность. В результате многолетнего опыта использования топлива Т-1 в авиации стало ясно, что из-за низкой термоокислительной стабильности такое топливо для реактивных двигателей отличается повышенными смолистыми отложениями в моторе НК-8, которым оборудовано большинство самолетов гражданской авиации (ТУ-154, ИЛ-62, ИЛ-76). Эта характеристика практически в 2 раза снижает период эксплуатации мотора. Использование такого топлива ограниченно
  • Т-2 (первая категория качества). Этот вид топлива является результатом прямой перегонки широкого фракционного состава. Температура выкипания составляет от 60 до 280 °С. В нем содержится до 40 % бензиновой фракции, в результате чего оно характеризуется высоким давлением насыщенных паров и низкой вязкостью и плотностью. Используется не часто и является резервным по отношению к топливам ТС-1 и РТ
  • топливо РТ создают методом гидроочистки прямогонных дистиллятов с пределами выкипания 135-280 °С. Сырьем для гидроочистки берутся дистилляты. Таким образом, вследствие очень высокого количества общей и меркаптановой серы, невозможно добиться получения топлива ТС-1. В процессе гидроочистки из нефтяного дистиллята убирают агрессивные и нестабильные компоненты, в которых содержится сера, азот и кислород. В результате таких действий существенно возрастает уровень термической стабильности, а также уменьшается коррозионная агрессивность топлива. Такое топливо в полной мере соответствует нормативам, которые предъявляются к реактивным топливам высшего класса

Топливо ТС-1. Зависимо от качества перерабатываемой нефти топливо получается или методом прямой перегонкой, или в смеси с гидроочищенным, либо демеркаптанизированным компонентом. Содержание гидроочищенного компонента в данной смеси не должно быть больше 70 %, что бы избежать значительное снижение противоизносных свойств. Гидроочистка используется, если в керосиновых дистиллятах нефти содержание меркаптановой и общей серы не соответствует требованиям стандарта, а демеркаптанизация — если только не соответствует содержание меркаптановой серы требованиям стандарта.

Топливо Т-1 – это продукт прямой перегонки нафтенового основания и малосернистых нефтей с пределами выкипания от 130 до 180 °С. Поскольку оно содержит значительное число нафтеновых кислот, а также имеет высокую кислотность, то его подвергают защелачиванию с дальнейшей водной промывкой, тем самым удаляя нафтеновые кислоты, которые образуются в результате защелачивания натриевых мыл.

Топливо Т-2 является продуктом прямой перегонки широкого фракционного состава, который выкипает при температуре 60-280 °С. Оно содержит до 40 % бензиновой фракции, что объясняет высокое давление его насыщенных паров, а также низкие плотность и вязкость. Повышенное давление насыщенных паров у топлива Т-2 непременно создает опасность образования паровых пробок во всей топливной системе самолета, что ограничит высоту его полета.

Читать еще:  Что такое рог в дизельном двигателе

Виды реактивных двигателей

Известны следующие главные типы реактивных двигателей:

турбореактивный и турбовинтовой.

Пороховой и жидкостной ракетный двигатели для собственной работы не нуждаются в кислороде из окружающего воздуха, поскольку нужный для сжигания горючего кислород содержится в веществах, входящих в состав пороха, либо в жидком окислителе.

При сгорании пороха либо жидкого горючего в смеси с жидким окислителем образуются продукты сгорания, занимающие многократно больший количество, чем исходные продукты, исходя из этого продукты сгорания в виде газов с громадной скоростью вырываются из реактивного сопла наружу.

В силу закона сохранения энергии количество перемещения совокупности тел имеется величина постоянная. Двигатель и заключенные в нем продукты сгорания являются совокупностью из двух тел. И в случае если одно из тел совокупности (продукты сгорания) массой т приобретает скорость истечения V„CT, т. е. формирует количество перемещения, равное произведению, то и второе тело совокупности (двигатель) должно взять равное по величине, но обратное по направлению количество перемещения.

Лишь в этом случае количество перемещения всей совокупности не изменится и не будет совершить правонарушение сохранения энергии. В случае если двигатель имеет массу, то он возьмёт скорость V в направлении, обратном истечению газа. Количество перемещения двигателя, равное произведению, должно равняться количеству перемещения продуктов сгорания

Применение пороховых и жидкостных ракетных двигателей для вертолета затруднительно из-за ограниченного времени их действия н трудности дросселирования. Будучи запушенными, эти двигатели все время развивают однообразную тягу , пока не сгорит все горючее.

В жидкостных ракетных двигателях сложно регулировать подачу горючего под большим давлением, их экономичность Мала, а срок работы мелок. Исходя из этого как пороховые, так и жидкостные ракетные двигатели не смогут использоваться как двигатели для вращения несущего вита.

Прямоточный воздушно-pеактивный двигатель применяет для сгорания горючего кислород «з окружающего воздуха и складывается из следующих главных частей: воздухозаборника (входной диффузор), камеры сгорания, реактивного сопла.

Воздухозаборник помогает для направления потока воздуха в двигатель. Форма входа в изменение и воздухозаборник площади проходного сечения на протяжении потока выбираются такими, дабы с минимальными гидравлическими утратами на входе обеспечить прирост давления воздуха по пути в камеру сгорания. Для уменьшения утрат на входе в воздухозаборник передняя его кромка выполнена в виде кольцевого крыльевого профиля, носик которого имеет небольшой радиус кривизны.

Для повышения давления воздуха воздухозаборнику придается вид расширяющегося канала (диффузора).

Преобразование тепловой энергии, заключенной в газе, в механическую работу истечения может случиться лишь в следствии расширения газа. Исходя из этого воздушное пространство перед поступлением в камеру сгорания должен быть подвергнут предварительному сжатию с целью увеличения его давления.

В полете воздушное пространство подходит к воздухозаборнику двигателя со скоростью, равной скорости полета. При висении вертолета эта скорость равна окружной скорости финиша лопасти. Перед входом в воздухозаборник воздушное пространство пара притормаживается, за счет чего растет его давление, а попав в расширяющийся канал воздухозаборника, еще больше сокращает собственную скорость, за счет чего увеличивается давление.

Так, в прямоточном двигателе давление воздуха увеличивается за счет применения кинетической энергии входящего в него воздуха. Этим разъясняется невозможность работы прямоточного двигателя на месте, в то время, когда скорость набегающего потока равна нулю. Этим же разъясняется повышение тяги двигателя с повышением скорости его перемещения.

Несущий винт вертолета с установленными на финишах лопастей прямоточными двигателями требует исходя из этого перед запуском двигателей предварительной раскрутки от постороннего источника энергии.

В камеру сгорания через форсунки непрерывно подается горючее. При горении горючего воздушное пространство нагревается и расширяется, за счет чего происходит повышение его скорости. Газ выходит из реактивного сопла со скоростью, существенно превышающей скорость входа.

В следствии ускорения массы газа в двигателя образуется реактивная тяга.

Прямоточный двигатель возможно с успехом применен для вертолета, в случае если обеспечить предварительную раскрутку винта.

Пульсирующий воздушно-pеактивный двигатель в этом отношении выгодно отличается от прямоточного, поскольку может создавать тягу на месте (без перемещения вертолета) и не требует раскрутки винта.

В пульсирующем двигателе сгорание горючего происходит не непрерывно, как в прямоточном, а иногда. Перед камерой сгорания пульсирующего двигателя установлена решетка с клапанами. Из-за наличия разности давлений воздуха в камере и воздухозаборнике сгорания клапаны раскрываются и пропускают в камеру сгорания порцию свежего воздуха.

Одновременно с этим в камеру сгорания впрыскивается горючее и поджигается. Нагрев воздуха приводит к кратковременному повышению давления в камере сгорания, в следствии чего клапаны в решетке закрываются. Газы из камеры сгорания с громадной скоростью вытекают через реактивное сопло, что приводит к понижению давления

в камере сгорания, и клапаны снова раскрываются, впуская в камеру очередную порцию свежего воздуха, по окончании чего цикл повторяется. Тяга для того чтобы двигателя изменяется от большого до нулевого значения. Но ввиду того, что частота пульсаций весьма громадна, трансформации тяги фактически не сказываются -на равномерности вращения несущего винта.

Читать еще:  Что такое динамо в двигателе

Частота пульсаций обратно пропорциональна длине двигателя. Так, в случае если двигатель, имеющий длину 610 мм, трудится с частотой пульсаций 270 циклов в секунду, то двигатель, имеющий длину 915 мм, — с частотой 180 циклов в секунду.

направляться заявить, что подача горючего к двигателям на финишах лопастей не требует применения насосов для принудительной подачи. Дело в том, что появляющаяся при вращении несущего винта центробежная сила сама гонит горючее от втулки винта к двигателям по горючее-проводам, проложенным на протяжении лопасти. Но в этом случае тяжело осуществить герметизацию подвижного соединения, через которое горючее от трубопроводов, находящихся на неподвижной части вертолета, передается на вращающуюся втулку.

регулировка подачи и Конструкция двигателя горючего и зажигания должны быть таковы, дабы обеспечить синхронность сгорания с пульсацией столба газов.

Пульсирующий двигатель, помимо этого, что может развивать тягу при работе на месте, имеет кроме этого то преимущество, что он намного меньше расходует топлива на создание каждого килограмма тяги, чем другие типы воздушно-реактивных двигателей. При выборе двигателя для установки на финишах лопастей вертолета конструкторы значительно чаще останавливаются «а пульсирующем двигателе еще и вследствие того что данный двигатель развивает громаднейшую величину тяги на каждую единицу лобовой площади.

Главным недочётом пульсирующих двигателей являются большие вибрационные нагрузки, этим разъясняется небольшой срок работы впускных клапанов (пара часов) и нередкие усталостные поломки хвостовой трубы. Помимо этого, к недочётам относятся потребность в сжатом воздухе для запуска (для начальных циклов работы) и, наконец, громадный шум трудящегося двигателя.

Турбореактивный и турбовинтовой двигатели в том виде, в котором они существуют на данный момент, на финишах лопастей употребляться не смогут. Не смотря на то, что эти двигатели и владеют мельчайшим удельным расходом горючего в час на любой килограмм тяги либо на каждую лошадиную силу, но удельный вес этих двигателей, т. е. отношение веса к тяге, еще так велик, что не разрешает их действенно применять на финишах лопастей. Эти двигатели смогут быть применены на вертолетах в простой силовой установке с механическим приводом к несущему винту.

Модели реактивных двигателей

Увлекательные записи:

  • Сухой су-7 — фронтовой истребитель. фото. характеристики.
  • Самолет миг-29. фото и видео. характеристики и история.
  • Аэропорт барнаул. bax. unbb. бан. официальный сайт.

Похожие статьи, которые вам, наверника будут интересны:

Реактивный двигатель самолета — двигатель, создающий нужную для перемещения силу тяги при помощи преобразования внутренней энергии горючего в…

Реактивный двигатель – устройство, создающее требуемую для перемещения силу тяги, преобразовывая внутреннюю энергию горючего в кинетическую энергию…

Основное отличие реактивного двигателя от поршневого пребывает в том, что в реактивном двигателе энергия сгораемого горючего расходуется на создание силы…

Реактивный двигатель – силовой агрегат, что формирует требуемое для полета самолета тяговое упрочнение посредством изменения внутренней энергии горючего…

Турбовинтовые двигатели употребляются в тех случаях, в то время, когда скорости полета самолета довольно малы. На громадном количестве современных…

Жидкостный ракетный двигатель – это двигатель, горючим для которого помогают химические жидкости и сжиженные газы. В зависимости от количества…

Чем авиационный бензин отличается от автомобильного

Сразу стоит отметить, что большинство видов воздушного транспорта (коммерческая авиация) использует для полётов авиационное топливо, которое используется также и для работы. Непосредственно авиационный бензин используется только для летательных аппаратов, которые работают с использованием поршневых двигателей (это могут быть или машины сверхмалой авиации или малые коммерческие самолёты).

Это привело к тому, что производство авиационного бензина стало узкоспециализированной деятельностью со сравнительно небольшими объёмами выпускаемой продукции. Существует три основных фактора, которые критичны для топлива, используемого для самолётов:

  1. детонационная стойкость, показатель которой значительно выше, чем у автомобильного горючего;
  2. фракционный состав (он является определяющим для температуры выкипания бензина, его испаряемости);
  3. химическая стабильность;

Также стоит отметить более высокое октановое число, способность выполнять функции хладагента, смазочного материала для трущихся элементов двигателя, большую удельную теплоту сгорания.

Что такое фракционный состав нефти

Нефть – уникальное природное полезное ископаемое, которое представляет собой черную жидкость маслянистой консистенции, имеющую специфический вид и запах. На сегодняшний день нет единого научного мнения о ее происхождении в природе. Так, наиболее популярная теория гласит, что процессы нефтеобразования проходили миллионы лет, а само полезное ископаемое являет собой остатки органических веществ. Иными словами, нефть образовалась из очень древних живых организмов.

Несмотря на то что данная теория получила всеобщее признание, отдельные ученые заявляют, что этот природный ресурс имеет абиогенное происхождение. Иными словами, нефть есть результат химического и физического воздействия высоких температур и давления на неорганические вещества.

Читать еще:  Что такое модульный двигатель

Это полезное ископаемое крайне неоднородно распространено по планете. Так, наиболее крупные месторождения приходятся на районы Персидского и Мексиканского заливов, Западную Сибирь, Каспий, Норвежское море и т. д. На сегодняшний день многие из них близки к исчерпанию, что заставляет правительства и нефтяные компании проводить усиленную геологоразведку и совершенствовать методы нефтедобычи для разработки более труднодоступных участков залегания ресурса.

Нефть имеет крайне сложный химический состав. По сути, она состоит из огромного количества различных соединений, обладающих разной молекулярной массой. На сегодняшний день не существует методик, которые бы позволили получать из нефти-сырца необходимый конечный продукт. Однако возможно разделение ее на фракции, углубленная переработка которых позволяет решить данную проблему.

По сути, фракция нефти представляет собой определенную группу соединений, объединенных общими химическими свойствами. Основной их особенностью выступает тот факт, что выкипают они только в определенном температурном интервале. Это их свойство позволяет осуществлять процесс ректификации, то есть первичной перегонки нефти. При использовании различных методов очистки происходит вторичная перегонка для получения более качественного продукта.

В соответствии со стандартами, принятыми в нефтеперерабатывающей промышленности, существует определенная градация фракций. Так, они бывают:

  • Легкими.

В их число входят петролейная и бензиновая фракции. Они образуются при температуре до +140 градусов.

Считаются лигроиновые, керосиновые и дизельные. Вместе с легкими они относятся к светлым нефтяным фракциям.

При высокой температуре, составляющей более +350 градусов, и в условиях вакуума образовывается мазут (темная фракция). Из него путем углубленной перегонки получают вакуумный газойль, а также гудрон в качестве остатка.

Как заправляют самолеты

Заправка очень важный процесс при обслуживании летной техники.

Заправка бывает двух видов:

  • дозаправка в воздухе (военных самолетов);
  • полная заправка в аэропорту.

Каждый из видов по своему сложен. Рассмотрим их по порядку.

Дозаправка в воздухе

Это один из самых сложных и, в то же время зрелищных элементов полетов военной техники. Именно в России более 100 лет назад была придумана воздушная заправка. Не всегда она была такой, как мы ее видим сейчас. Существовали уникальные методы, в частности у бомбардировщиков Ту-16, когда самолеты заправлялись «крыло в крыло». И по сей день, наша военная авиация является передовой в технике заправок в воздухе. К сожалению, этот процесс не так просто увидеть обычным зрителям. Все потому, что попросту опасен ввиду чрезвычайного сближения самолетов (примерно на 20 метров).

Смотрите видео как заправляют бомбардировщик Стелс:

Видео как заправляют Су-24:


В данный момент многие типы самолетов военной авиации ВКС России обладают возможностью заправиться в воздухе.

  1. Истребители — Су-27, Миг-31,Миг-29;
  2. Штурмовики – Су-24М;
  3. Бомбардировщики – Ту-95, Ту-160.

Заправщиком в основном сейчас выступает модернизированный Ил-78М.

Чтобы заправить в воздухе истребитель потребуется 6 минут, тяжелый бомбардировщик – 20 минут, танкер – 45 минут.

Смотрите видео подборку неудачных дозаправок в воздухе:

Заправка в аэропортах

В аэропорт топливо попадает двумя путями:

  1. Железнодорожным путем попадает топливо в цистернах, из которых при тщательном контроле всех параметров содержимое перекачивается в специальные резервуары. Рядом, по нормам всегда должны находиться подземные отсеки с водой, который в экстренном случае будут использованы для тушения горючего. На цистернах находятся специальные приборы, которые показывают все параметры топлива. Для перегонки используются мощные насосы.
  2. Трубопровод. Этот путь включает в себя доставку по трубам горючего с ближайшего нефтеперерабатывающего узла. На территории аэропорта находятся приборы учета качества топлива, которое проверяется по 12 основным параметрам. После анализа материала, происходит перегонка в центральный заправочный комплекс.

Процесс заправки лайнера может осуществляться двумя способами: через топливо заправщик или специальные колонки, расположенные по всей территории.

В среднем, скорость заправки через топливо заправщик будет составлять около 40 минут – это регламентировано максимальной скоростью подачи топлива по международным стандартам. На всех стадиях заправки строго соблюдается техника безопасности.

В заключении отметим, что процесс заправки очень важен для современных полетов, как гражданских, так и военных. Эта весьма сложная и опасная процедура. В ней много особенностей, исходя из условий применения и типов самолетов.

Гражданские самолеты в большинстве случаев потребляют огромное количество топлива, однако в пересчет на одного пассажира – это приемлемая цифра. Многие производители модифицируют самолет, чтобы повысить ее экономичность и, следовательно, уменьшить расходы на обслуживание. Современное высококачественное авиационное топливо поставляется во все крупные аэропорты, где происходит дозаправка лайнеров. А дозаправка в воздухе – одно из самых захватывающих зрелищ для зрителей и ответственных процедур для военных летчиков. Главным фактором остается одно – соблюдение техники безопасности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector