1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое трансформаторный двигатель

Устройство и принцип действия силовых трансформаторов

Электротехнический агрегат, имеющий две, три или больше обмоток, статически устанавливается в электросеть. Силовой трансформатор изменяет переменное напряжение и ток без отклонения частоты. Преобразователь, применяемый во вторичных источниках питания, называют понижающим устройством. Повышающие конструкции увеличивают напряжение, используются в высоковольтных ЛЭП с большими мощностью, пропускной способностью и емкостью.

Что это за устройство

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник.

Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть.

Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным. Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

Это устройство, первичная обмотка которого последовательно включена в рабочую цепь, а вторичная служит для проведения измерений. Подобные устройства используются не только в лабораториях для оценки величин. Истинное место трансформаторов тока возле электростанций, где они помогают контролировать режимы, внося коррективы в процесс эксплуатации оборудования.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Область применения

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Трансформаторы тока принято классифицировать по роду тока. Измеряемое напряжение различается по роду. Для проведения измерений в цепи постоянного тока используется нарезка сигнала на импульсы. Напрямую трансформация невозможна:

  • для переменного тока;
  • для постоянного тока.

По назначению: мы уже сказали, что часто трансформаторы тока применяются для измерений (к примеру, кВт ч). Называют системы, где требуется защитить персонал для повышения безопасности.

Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования. Трансформаторы делят в зависимости от назначения. Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.
Читать еще:  Давление газов в цилиндре двигателя формула

Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

Принцип работы устройства

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток, выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток. Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1, U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек, либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией.

Микротрансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги. Подробнее принцип работы трансформатора тока рассмотрен в видеоролике:

Вкратце принцип работы и устройство трансформатора тока заключается в подаче питания от источника электричества. Наиболее актуальным является использование для снижения первичных показателей тока до величины, применяемой в измерительных и защитных цепях, сигнализации и управления.

Во вторичной обмотке отмечаются показатели тока 5 А или 1 А. Измерительные устройства подключаются к вторичной обмотке, а к первичной подключается цепь, в которой измеряют ток. Для расчета тока во второй обмотке используют показания в первичной обмотке и делят на коэффициент трансформации.

Режимы работы

  1. В автотрансформаторных режимах (а) возможна передача номинальной мощности из обмотки ВН в обмотку НН или наоборот. В обоих режимах последовательная и общая обмотки загружены типовой мощностью, что допустимо.
  2. В трансформаторных режимах возможна передача мощности из обмотки НН в обмотку СН или ВН, причем обмотку НН можно загрузить не более чем на Sтип. В этих режимах АТ недогружен, что допустимо, но неэкономично.
  3. В комбинированном режиме (б) возможна передача мощности не более S тип из сети НН в сеть ВН и при этом ( Sном ­Sтип) автотрансформаторным путем из сети СН в сеть ВН. Этот режим является допустимым и экономичным, т.к. загрузка общей обмотки может в пределе равной 0, а через АТ в сумме передается Sном.

Выбор оптимального режима работы важен для трёхфазных устройств. Они используются для непрерывной регулировки параметров с малыми потерями. Этот компонент обеспечивает пользователям наилучшую точность регулировки при минимальных потерях и, следовательно, при пониженном тепловыделении. Для трёхфазного тока данный эффект достигается с помощью механических соединений трёх управляющих трансформаторов. Конструкция скользящих токосъёмников выполняется такой, чтобы обеспечить надёжный выходной контакт и – при срабатывании – одновременную очистку контактной дорожки. Используются угольные щётки, которые могут вращаться или перемещаться возвратно-поступательно.

Переменный автотрансформатор имеет несколько первичных обмоток для создания вторичного напряжения, которое регулируется в диапазоне от нескольких вольт до долей вольт за оборот. Это достигается благодаря тому, что угольная щётка или ползунок находятся в контакте с одним или несколькими витками первичной обмотки. Поскольку витки первичной катушки равномерно распределены по её длине, то выходное значение пропорционально угловому вращению щётки.

Читать еще:  Ваз 2107 инжектор сколько ходит двигатель

В простейшем случае, на замкнутом магнитопроводе располагаются две обмотки соединенные последовательно. В зависимости от варианта подключения источника энергии и нагрузки, автотрансформатор может работать как повышающий или как понижающий.

Существует конструкция, в которой реализован механизм ручного регулирования выходного напряжения (Вариак, ЛАТР). Так же применяются блоки автоматической регулировки с обратной связью, по сути, автотрансформатор с таким устройством можно назвать стабилизатором напряжения.

Принцип действия трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции. Возьмем для примера двухобмоточный однофазный трансформатор. К первичной обмотке подключается источник переменного тока. Этот ток протекает по обмотке и создает переменный магнитный поток Ф, который пронизывает обмотки трансформатора и изменяясь наводит в них ЭДС. Так как обмотки имеют различное число витков, то и величина ЭДС будет в них различная.

В повышающих трансах вторичное напряжение будет больше первичного, а в понижающих – наоборот. К вторичной обмотке подключается нагрузка и возникает вторичный ток, созданный индуцируемой магнитным потоком ЭДС. Таким образом, в трансформаторе происходит передача электроэнергии из первичной обмотки с напряжением U1 и током I1 во вторичную обмотку с током I2 и напряжением U2 посредством магнитного потока.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Читать еще:  Infiniti g35 стук в двигателе

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

Ремонт и техническое обслуживание

Надежность силовых трансформаторов напрямую зависит от качества и своевременности их обслуживания. Устройства, установленные в помещениях, где работает персонал предприятия, подвергаются ежедневному осмотру с контролем показателей уровня масла, состояния поглотителя и устройств регенерации. Кроме того, проверяется целостность корпуса и основных элементов. Трансформаторы в помещениях без персонала осматриваются раз в месяц, а трансформаторные пункты – дважды в год.

Внеплановый осмотр силового трансформатора и его систем защиты проводится при резком изменении температуры окружающего воздуха, а также при аварийных режимах. Периодическому обслуживанию подвергаются и устройства регулировки напряжения. Причина – окисление контактных групп, что приводит к возрастанию их переходного сопротивления. Перед сезонными изменениями нагрузки (обычно дважды в год) устройство отключается от потребителей и питания, после чего регулятор напряжения переводится последовательно во все возможные положения. Процедура способствует разрушению пленки окислов.

Лабораторный анализ масла производится каждый год при капитальном ремонте. Если масло не удовлетворяет требованиям при визуальном осмотре (цвет) или по данным обследования, производится его замена или доливка.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector