7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое теплообмен двигателя

Тела, имеющие различные температуры, будут обмениваться тепловой энергией. Этот процесс называется теплообменом.

Теплообмен – процесс обмена тепловой энергией между телами, имеющими различные температуры.

Рассмотрим два тела, имеющие различные температуры (рис. 1).

Тело, имеющее более высокую температуру, будет остывать и отдавать тепловую энергию телу, имеющему низкую температуру. А тело с низкой температурой будет получать количество теплоты и нагреваться.

На рисунке, горячее тело имеет розовый оттенок, а холодное изображено голубым цветом.

Когда температуры тел выравниваются, теплообмен прекращается.

Чтобы теплообмен происходил, нужно, чтобы тела имели различные температуры.

Когда температура тел выравняется, теплообмен прекратится.

Тепловое равновесие — это состояние, при котором тела имеют одинаковую температуру.

Теплопроводность.

Теплопроводность — это вид теплопередачи, при котором происходит непосредственная передача энергии от частиц (молекул, атомов) более нагретой части тела к частицам его менее нагретой части.

Рассмотрим ряд опытов с нагревом твердого тела, жидкости и газа.

Закрепим в штативе толстую медную проволоку, а к проволоке прикрепим воском или пластилином несколько гвоздиков. При нагревании свободного конца проволоки в пламени спиртовки воск плавится, и гвоздики постепенно отпадают от проволоки. Причем сначала отпадают те, что находятся ближе к пламени, затем по очереди все остальные. Объясняется это следующим обра­зом. Сначала увеличивается скорость движения тех частиц металла, которые находятся ближе к пламени. Температура проволоки в этом месте повышается. При взаимодействии этих частиц с соседними скорость последних также увеличивается, в результате чего повышается температура следующей части проволоки. Затем увеличивается скорость движения следующих частиц и т. д., пока не прогреется вся проволока.

Следует помнить, что при теплопроводности само вещество не перемещается вдоль тела, пере­носится лишь энергия.

Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой. Положим в нее кусочек льда и станем нагревать верхнюю часть пробирки. Вода у поверхности скоро закипит. Лед же на дне пробирки за это время почти не растает. Значит, у жидкостей теплопроводность невелика, за исключением ртути и жидких металлов.

Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.

Исследуем теплопроводность газов. Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышко. Палец при этом долго не чувствует тепла.

Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел. Следовательно, теплопроводность газов еще меньше.

Итак, теплопроводность различных веществ различна.

Наибольшей теплопроводностью обладают металлы, особенно серебро и медь. Если теплопроводность различных веществ сравнивать с теплопроводностью меди, то окажется, что у железа она меньше примерно в 5 раз, у воды — в 658 раз, у пористого кирпича — в 848 раз, у свежевыпавшего снега — почти в 4000 раз, у ваты, древесных опилок и овечьей шерсти — почти в 10 000 раз, а у воздуха она меньше примерно в 20 000 раз. Плохой теплопроводностью обладают также воло­сы, перья, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.

Читать еще:  Двигатель 1700 какие поршни

Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, ручки для кастрюль, сковородок изготавливают из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а зна­чит, предохраняют помещения от охлаждения. На применении вакуума в качестве теплоизоля­ционного «материала» основано устройство термоса, или сосуда Дьюара, который был изобретен в 1892 г. английским ученым Джеймсом Дьюаром.

Устройство теплообменника

Как отмечалось выше, конструкции теплообменных аппаратов очень сильно отличаются между собой, поэтому подробно о каждой из них будет рассказано в следующих статьях.

В качестве примера можно рассмотреть пластинчатый разборный теплообменник, как наиболее современный и вытесняющий старые поколения теплообменных аппаратов: кожухотрубные (кожухотрубчатые), «труба в трубе» и другие виды.

Данный вид ТО состоит из двух главных пластин: подвижной и неподвижной прижимных плит. Обе плиты имеют несколько отверстий.

Отверстия, имеющие входящее и выходящее назначение потоков, надежно укрепляют специальной прокладкой и прочными кольцами спереди и сзади соответственно.

Рис. 4. Устройство РПТО

При монтаже к входным и выходным отверстиям через патрубки подключаются элементы трубопровода. Для соединения могут быть использованы трубы различного диаметра и с разным типом резьбы (современные требования предлагают использовать резьбу ГОСТа №12815 и ГОСТа №6357). Оба вида имеют прямую зависимость от устройства и его вида.

Посередине между прижимными плитами размещается множество пластин. Толщина пластин находится в пределах всего 0,5 мм, изготавливаются они, только из нержавеющей стали или титана с помощью метода холодной штамповки.

Все слои пластин перемежаются тонкой специальной уплотнительной резиной, которая устанавливается между всеми слоями пластин. Материал резины обладает заметной повышенной устойчивостью к высоким температурам, благодаря которой рабочие каналы становятся полностью герметичными.

Прямые направляющие снизу и сверху обеспечивают фиксацию пакета пластин, а также являются направляющими при сборке агрегата. Пластины сжимаются до необходимого размера при помощи затяжных гаек.

Внутреннее расположение пластин выбрано не случайно, каждая пластина через одну повернута на 180° относительно, рядом расположенных, соседних пластин. Благодаря данному устройству теплообменного аппарата входящее канальное отверстие имеет двойное уплотнение.

Наглядно устройство пластинчатого теплообменника, его сборку и принцип действия можно посмотреть в данном видео:

Площадь теплообмена теплообменника

Теплообменники выпускаются регенеративного и рекуперативного типа. В последнем движущиеся среды разделены стенкой. Сегодня рекуперативными является большая часть теплообменников всевозможных конструкций. В другом виде холодные и горячие носители тепла контачат с одной и той же поверхностью теплообмена по череде. В них при контакте с горячим теплоносителем на стенке накапливается теплота, а при контакте с холодным теплоносителем она отдаётся.

Теплообмен – это процесс передачи тепла менее холодному теплоносителю. Именно на этом процесс сконструированы все теплообменники. Они нашли применение в химической, нефте-химической и нефтеперерабатывающей промышленности, в газовой, атомной, холодильной, коммунальном хозяйстве и быту.

Конструкция теплообменника зависит от сферы использования. Есть аппараты, в которых наряду с теплообменом протекают процессы смешения, испарения, конденсации и т.д.

Читать еще:  Что такое помпаж турбины двигателя

Самые распространенные виды рекуперативных теплообменников в промышленности:

  • Кожухотрубные — мб 20-30;
  • Секционные — воздухоохладитель 2 воп-3;
  • Витые;
  • Погружные;
  • Оросительные;
  • Пластинчатые;
  • Ребристые;
  • Спиральные;
  • Графитовые;
  • Пластинчато-ребристые.

При выборе того или иного типа теплообменника следует учитывать условия эксплуатации. Так коэффициент теплопередачи пластинчатых устройств больше в три раза, чем у кожухотрубных, помимо этого меньше и в 4 раза поверхность теплообмена. Но в сравнении с иноземными пластинчатыми теплообменниками, отечественные кожухотрубные аналоги имеют свои преимущества: высокая надежность при гидравлическом ударе, меньшая стоимость. Это обеспечивается особой технологией нанесения на внутреннюю поверхность труб выступов небольшой высоты.

На этом я заканчиваю, а вы можете ознакомиться с образцами нашей продукции.

Наша продукция

  1. трубные пучки — как на фото выше.
  2. газоохладитель огп 50 для турбогенератора ТВ 60-2

Кроме теплообменников наш завод изготавливает мотор редуктор 2мч и водяное охлаждение электродвигателя.

Материал рубрики

  • уравнение теплообмена

Прекрасного вам настроения, солнечных дней, заказов теплообменников на заводе МеталлЭкспортПром и Удачи!

Выбор промышленного теплообменного оборудования

Для эффективного выполнения задач в промышленности теплообменник должен соответствовать требованиям технологического процесса:

  • возможность регулирования и поддержания температуры рабочей среды;
  • соответствие скорости циркуляции продукта необходимой минимальной продолжительности пребывания агента в системе;
  • устойчивость материала теплообменника к воздействию рабочей среды;
  • соответствие устройства давлению теплоносителя.

Второй важный критерий отбора – экономичность и производительность прибора, сочетание высокой интенсивности теплообмена с сохранением необходимых гидравлических показателей устройства.

Эксплуатация разных видов теплообменных устройств в промышленности

Применение теплообменников может быть построено по следующим направлениям:

  • использование остаточного тепла для генерации электрической энергии;
  • точная регулировка температуры во время химических процессов;
  • вторичное использование энергии для бытовых потребностей;
  • поддержание температуры в бытовых системах отопления в стандартизированных параметрах.

Исходя из поставленных задач, можно выбрать оптимальную модель прибора по мощности, конструкции и иным параметрам.

Пластинчатый теплообменный аппарат

Оборудование с пластинами может быть использовано в разных отраслях промышленности, в том числе пищевой. Его использование экономически целесообразно при пастеризации молока и сока, которое происходит в три шага. Подогретый на третьей стадии раствор используется как горячий теплоноситель для подогрева на двух остальных этапах. Это позволяет значительно экономить ресурсы.

Не менее распространены пластинчатые модели при обогреве паром с низким давлением. Данный прибор не пригоден для функционирования в условиях высокого давления из-за большой вероятности разгерметизации уплотнительных прокладок между пластинами.

Принципиальная схема пластинчатого теплообменного аппарата
1,3,5 — нечетные пластины; 2,4 — четные пластины; I — вход и выход первого теплоносителя; II — вход и выход второго теплоносителя

Труба в трубе

Оборудование, которое имеет небольшую площадь теплообмена и применяется только в установках малой мощности для передачи энергии в средах «газ-жидкость».

Схема теплообменного аппарата «труба в трубе»
1 — внутренняя труба; 2 — наружная труба; 3 — изогнутая соединительная труба; 4 — соединительные патрубки

Спиральные конструкции

Приборы применяются для взаимодействия рабочих сред «жидкость-жидкость». В качестве агента нередко выступает пар.

Основное назначение теплообменника: конденсаторы пониженного давления. Если теплоноситель имеет твердые частицы, волокна и иные примеси, прибор устанавливают в горизонтальном положении для предотвращения скапливания веществ в нижней части установки.

Читать еще:  Генератор газ 3110 406 двигатель неисправности

Схема спирального теплообменника

Элементные модели

Теплообменник представляет собой нескольких секций, объединенных в одну конструкцию. Его активно эксплуатируют, когда необходимо работать с высоким давлением, или теплоносители циркулируют с одинаковой скоростью без изменения агрегатного состояния.

Кожухотрубный аппарат

Установка, в которой теплоносители движутся по трубам и в межтрубном пространстве. Для увеличения скорости процесса предусмотрены решетки и перегородки. Область применения: промышленность и транспортная сфера для нагрева, охлаждения и конденсации газообразных и жидких сред.

Витые приборы

Установки участвуют в разделении газовых смесей путем глубокого охлаждения в приборах высокого давления. Один из главных недостатков конструкции – трансформация под действием температурного напряжения.

Схема витого теплообменника

Графитовые теплообменные установки

Это незаменимое оборудование на ряде предприятий. Материал устройства устойчив к коррозии и отличается высокой теплопроводностью.

Схема графитового теплообменника

Разновидности поверхностных теплообменников

Простейший т/о – труба в трубе. Холодная трубка с водой проходит в трубе большего сечения, заполненной горячим агентом. При этом поверхность внутренней трубки нагревается и передает тепло воде. Так работают бойлеры. Если трубок много и собраны они в пучок, то получается кожухотрубный теплообменник. Аппараты с трубным пучком, закрепленном с торцов решетками, распространены в промышленности и применяются для бытовой водоподготовки.

Витые теплообменники представляют змеевики, навитые в корпусе. Межтрубное пространство заполняется другим потоком. Аппаратура применяется при высоком давлении одного из агентов.

Двухтрубные теплообменники применяются для передачи тепла в фазах газ-жидкость. Аппараты могут работать под давлением с высокой теплопередачей.

Спиральный т/о

Спиральные теплообменники представляют бочку, в которой лентой-спиралью расположен плоский лабиринт с внутренней полостью. По спирали движется горячий агент, омываемый холодной водой. Конструкция сложная в изготовлении. Но это единственный вид аппаратов для теплообмена агента, содержащего взвеси, пульпу. Откидывающиеся с обеих сторон крышки позволяют легко чистить зазоры.

Пластинчатый теплообменник представляет особую конструкцию греющих труб, собранных в виде плоского элемента их оребренных труб и многоходовым движением воды. Пластины напоминают гармошки. Их недостаток – забиваются накипью при плохой водоподготовке.

Зачем нужен теплообменник в системе отопления? Представьте, что в трубах вода 900. Это приведет к разрыву пластиковых труб, ожогам. В каждом тепловом узле имеется система т/о, позволяющая поддерживать температурные параметры.

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

• Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
• К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
• Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector