0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое пгл в двигателях

Конструкция универсального коллекторного электродвигателя не имеет принципиальных отличий от конструкции коллекторного электродвигателя постоянного тока с обмотками возбуждения, за исключением того, что вся магнитная система (и статор, и ротор) выполняется шихтованной и обмотка возбуждения делается секционированной. Шихтованная конструкция и статора, и ротора обусловлена тем, что при работе на переменном токе их пронизывают переменные магнитные потоки, вызывая значительные магнитные потери.

Секционирование обмотки возбуждения вызвано необходимостью изменения числа витков обмотки возбуждения с целью сближения рабочих характеристик при работе электродвигателя от сетей постоянного и переменного тока [2].

Универсальный коллекторный электродвигатель может быть выполнен как с последовательным, так и с параллельным и независимым возбуждением.

В настоящее время универсальные коллекторные электродвигатели выполняют только с последовательным возбуждением .

Таким образом, результирующий электромагнитный момент при работе двигателя от сети переменного тока пульсирует. Пульсации электромагнитного момента практически не нарушают работу двигателя. Объясняется это тем, что при значительной частоте пульсаций электромагнитного момента () и большом моменте инерции якоря вращение последнего оказывается равномерным.

Принцип работы двигателя Ванкеля

В двигателе Ванкеля цикл работы точно такой же, как в классическом четырёхтактном агрегате внутреннего сгорания: впуск, сжатие, рабочий ход и выпуск. Вот только за него не поршень совершает два хода вверх-вниз (вперёд-назад), а вал делает всего один оборот трёхгранного ротора внутри эпитрохоидальной камеры цилиндра, являющейся сердцем двигателя.

Принцип работы двигателя Ванкеля: 1 — впуск топливо-воздушной смеси; 2 — сжатие смеси; 3 — зажигание и рабочий ход; 4 — выпуск отработанных газов;

Несмотря на кажущуюся сложность, принцип работы двигателя Ванкеля достаточно прост.

  • На первом этапе цикла смесь из бензина и воздуха поступает в камеру мотора.
  • Затем ротор проворачивается на 45 градусов, сжимая её: таком виде происходит поджиг смеси искрой от свечи зажигания.
  • После чего следует рабочая фаза: сгоревшая топливно-воздушная смесь давит на ротор, обеспечивая тем самым его вращение.
  • Наконец, на заключительном этапе ротор проворачивается и отработанные газы через выпускную систему попадают в выхлопную систему.

И так раз за разом. Но в отличие от классического ДВС, где 2-3 тысячи оборотов в минуту – рабочий режим, для двигателя Ванкеля даже 10 тысяч оборотов – не предел.

Эксцентриковое вращение вала обеспечивает его форма – с внутренним отверстием и зубцами, ротор вращается вокруг неподвижного вала с ответными зубьями. Именно они не дают ему проскользнуть и заклинить даже при особенно интенсивном вращении.

Читайте также: Что такое оппозитный двигатель и как он работает.

Купить кабель ПГЛ-М могут физические и юридические лица по безналичному расчету. Отгрузка купленной продукции производится в течение одного — двух дней с момента поступления оплаты на счет нашей компании.

Расшифровка провода ПГЛ-М:
П — Провод
Г — Гибкий
Л — Луженый

Элементы конструкции провода ПГЛ-М:

Жила — медная мягкая луженая проволока
Провода медные неизолированные гибкие луженые

Область применения провода ПГЛ-М
Провода предназначены для выводов полупроводниковых приборов, работающих при температуре от -60 до +140 oC, относительной влажности до 98% при температуре +35 oC.

Производители кабеля ПГЛ-М:

Использование низкокачественного или контрафактного кабеля ПГЛ-М может привести к самым печальным последствиям. Для того, чтобы избежать подобных проблем, воспользуйтесь нашим списком наиболее надежных и проверенных кабельных производителей.

* Полный список производителей можно посмотреть ЗДЕСЬ.

Вы можете оставить заявку через любую форму связи на сайте или на странице товара, или напрямую связаться с нашими менеджерами по номерам телефонов на сайте.

Как только менеджер оформит заявку – вам будет выслан расчетный счет, по реквизитам которого вы сможете совершить оплаты заказа через любой банк Российской Федерации. Оплату можно производить как через личный кабинет банка, так и при визите в банковское отделение. К тому же, реквизиты могут быть оплачены с помощью электронных платежных систем, таких как Ю-Money (Яндекс.Деньги) и Qiwi.

Заводы-изготовители предоставляют гарантию на кабельно-проводниковые изделия. О сроках действия гарантии на различные кабельные изделия вы можете уточнить у наших менеджеров или на странице интересующего вас товара во вкладке «Описание».

Вы можете отправить заявку менеджеру или позвонить по номеру телефона, указанному на сайте

Если заказанная марка кабеля подлежит обязательной сертификации, то вместе с кабелем клиент получает сертификат качества, паспорт качества кабеля, а также оригиналы отгрузочных документов

Медный кабель лучше проводит ток и выдерживает больше изгибов. Алюминий дешевле, легче и хуже проводит ток. Медный кабель предпочтительнее. Но если линия прокладывается на дальние расстояния и в небольших помещениях, то в целях экономии имеет смысл приобрести кабель с алюминиевыми жилами.

Провод представляет собой одну жилу или несколько жил в скрутке со слоем изоляции. Кабель – это несколько соединенных вместе изолированных проводов, объединенных в общую оболочку.

Сшитый полиэтилен устойчив к более широкому температурному диапазону, обладает большей гибкостью и устойчивостью к истираниям. ПВХ немного дешевле, устойчив к ультрафиолету и имеет большую жесткость.

Негорючие кабели (индекс нг) не распространяют горение при групповой прокладке, когда несколько кабелей соприкасаются друг с другом: в случаях даже сильных перегревов – они будут оплавляться, но не будут воспламеняться.

Бездымные (нг-LS) так же негорючи, но в дополнение к этому, производят на 50% меньше дыма при воздействии высоких температур и открытого огня.

Огнеупорные кабели (нг-FRLS) обладают свойствами бездымных и дополнительным слоем негорючей ленты поверх жилы, благодаря чему могут выдержать воздействие огня до 8 часов. И даже при полном оплавлении оболочки – будут способны работать некоторое время.

Стоимость кабельной продукции за метр зависит от объема заказа. Этот вопрос можно обсудить с менеджером.

Преимущества и недостатки

p, blockquote 19,0,0,0,0 —>

Основными достоинствами немецких моторов считаются:

p, blockquote 20,1,0,0,0 —>

  • высокая производительность;
  • экономичность;
  • отсутствие «турбоям» в любом диапазоне оборотов и при ускорении;
  • экологичность. Показатель СО 2 моторов TSI в разы меньше чем у атмосферных;
  • меньшая стоимость растаможивания;
  • широкие возможности для тюнинга. Форсировать двигатели достаточно просто.

p, blockquote 21,0,0,0,0 —>

Недостатком TSI считается их высокая чувствительность и повышенные требования к обслуживанию. Моторы нуждаются в трепетном уходе, частой замене расходных материалов (масел, фильтров и т.д.), использованию топлива высокого качества. Недешево обходится и ремонт подобных силовых агрегатов.

p, blockquote 22,0,0,0,0 —>

ДВА новых типа двигателей для перемещения в космосе. Испытания первой модели магнито-плазмодинамического двигателя

Ещё осенью 2019-го года промелькнули сообщения, что российские инженеры предложили ДВА новых типа двигателей для перемещения в космосе. Революции в скорости никто не обещал, но сообщения об ожидаемых КПД были обнадёживающие.

Увы, потом наступила тишина. Номера обоих патентов были доступны и теория смотрелась неплохо, но вестей об успехах не было.

Читать еще:  Что такое перепрошивка двигателя что делать

И, те кто был в теме, разделились.

Одни решили, что это были очередные прожекты без последствий.

Другие ванговали, что это было просто преждевременное сообщение и работы ведутся втихую, а болтливые торопыги (возможно) получили «по-шапке» 😉

И вот, наконец появилась хорошая новость об одном из проектов — об испытаниях первой модели магнитоплазмодинамического двигателя.

Это уже не теория — вот кадр с первых испытаний:

Кадр испытаний магнитоплазмодинамического двигателя

Пояснение для тех, кто не в теме

(Сведущие сразу могут прокрутить вниз, к самой новости)

Для выхода на орбиту с поверхности Земли по-прежнему нужны ракеты. И так будет ещё очень долго. А вот, на чём летать в межпланетном пространстве — большой вопрос.

Обычные жидкостные двигатели хороши тем, что быстро разгоняются. Но, развиваемые ими итоговые скорости слишком малы для быстрых перелётов от планеты к планете.

Станция «Кассини» летела к Сатурну почти 7 лет.

Нужно сокращать время полёта.

Одно из решений — российский космический ядерный буксир «Нуклон». Это ядерный электрогенератор, который запитывает электрические двигатели. Да, установка в целом всё равно «реактивная», но её КПД в разы выше, чем у обычных ракет. При той же массе топлива, мы получаем более высокую скорость в итоге.

Но, одно из ограничений «Нуклона» — малая тяга движков. Да, при полёте к Юпитеру, он обгонит «обычную» ракету. На расстояниях до Марса выгоды уже практически нет. А, до Луны он и вовсе будет лететь аж 200 дней (хотя, для беспилотника с полезной нагрузкой 10 тонн это не так плохо).

В итоге, Россия спроектировала энергоустановку в 480 кВт. Но, один из важнейших вопросов — увеличение тяги двигателей — остался. Самые лучшие ионные двигатели имеют тягу, с трудом дотягивающую до 1 Н (ньютона).

Вот об этих конечных двигателях и идёт речь. «Нуклону» нужны новые технологии электрических «приводов».

Ионные движки близки к своему пределу — сейчас тяга лучшего из них — всего 1,5 Н. Теоретически, могут сделать ещё раза в два больше. Дальше — тупик.

Магнитный плазмодинамический двигатель

На этом фоне очень интересно сообщение, что российская компания «СуперОкс» представила данные об испытаниях первой версии своей силовой установки с использованием сверхпроводящих магнитов. Насколько можно понять, это промежуточный итог трёхлетней работы. Сообщается, что в работе также принимала участие кафедра физики плазмы НИЯУ МИФИ.

Статья об этом была опубликована в британском журнале Journal of Physics в декабре 2020 года. Посмотрите источник на английском — буду признателен за уточнения.

Кому лень — может посмотреть новость на русском на сайте самой компании.

Вакуумная камера для испытаний первых прообразов двигателей.

Вообще, двигатель на этом принципе был предложен нашим изобретателем Ю. В. Кубаревым в 1958 году (работы под его руководством велись ещё недавно в Воронежском ОАО КБХА).

Так что, неверно говорить о новом типе двигателя в теоретическом смысле.

Но, с точки зрения практики, вполне можно говорить о новинке. Потому что рабочего образца ещё не было ни у кого. Так, в 2014 году Кубарев обмолвился в одном интервью, что американская опытная установка «никуда не полетит, слишком тяжёлая» — изобретателю точно виднее было :).

Эти установки должны обеспечивать скорость истечения рабочего тела от 15 до 60 км/с, а по последним данным до 110 км/с и более. Это в 25 раз выше, чем в жидкостных реактивных двигателях (

4 км/с у водородных).

В двух словах: для создания тяги в этом двигателе используется сила Лоренца (сила, действующая на заряженные частицы электромагнитным полем). В статье также говорится, что это магнитоплазменные двигатели имеют потенциал тяги до 200 Н (правильно ли я перевёл это место? — уж больно хорошо звучит. ).

Хотя, зам. ген. директора ЗАО «СуперОкс» Алексей Воронов был более осторожен, сказав, что:

«Разработанная технология позволяет проектировать двигатель с реактивной тягой вплоть до 5 Ньютонов и более без потери качества преобразования энергии. Этот результат стал возможен только благодаря высокому магнитному полю в нашем двигателе, которое создается магнитом из высокотемпературного сверхпроводника (ВТСП)»

На этой схеме в качестве рабочего тела используется литий

Сейчас испытан только лабораторный опытный образец, который развил мощность почти в 1 Н при мощности установки

Не впечатлило? Тогда ещё раз вспомните, что это пока только опытный образец, но он уже сравнялся с хорошими ионниками, которые развиваются много лет. есть над чем подумать и помечтать 🙂

(наш ИД-500 развивает 0,35-0,75 Н при чуть большей потребляемой мощности)

Приведу цитату из статьи с более точными данными:

Средние данные с расходом топлива (аргона) 20, 15 и 10 мг/с составляют 1,22, 1,34 и 1,75 кДж/мг.

Максимальная расчетная тяга достигается 850 мН при 50 мг/с. Наилучший полученный удельный импульс равен 3840 с при 10 мг/с. Максимальные получаемые значения тяги при заданной тяге расход топлива 48 мН / кВт при 50 мг / с.

Получена максимальная мощность дуги составляет 27,5 кВт при 20 мг/с.

Наилучшая достигнутая эффективность катода диаметром 10 мм составляет 54% при 15 мг/с при тяге 554 мН и удельном импульсе 3763 с при 18,9 кВт (450 А, 42,1 В) при 29,3 мН / кВт и 1,3 кДж / мг.

Кому мало данных — читайте статью.

Что сказать, пока не густо, но для начала очень даже прилично.

Даже если в итоговых рабочих изделиях будут всего лишь заявленные 5-6 Н, — это в 3-4 раза лучше того, что могут обеспечить лучшие ионники. Лиха беда — начало 🙂

И ещё об одном. В двигателе применены сверхпроводники. А это означает уменьшение массы магнита в 4 раза по сравнению с медными магнитами в современных электрореактивных двигателях.

Меньше масса — выше ускорение, быстрее долетим!

Тот самый магнит — вес 9 кг.

Думаю, что именно об этих движках говорилось в ТЗ на Нуклон — если мне не изменяет память, там шла речь именно о плазменных двигателях, а не об ионниках.

Первый — как обеспечат низкие температуры для сверхпроводников? Принято считать, что в космосе холодно, но не достаточно (и не забудем, что вакуум — лучший теплоизолятор). Значит, будет криогенная установка, а это дополнительный груз, снижение надёжности и т.д.

С другой стороны — материаловеды работают, иногда проскакивают сообщения о высокотемпературных сверхпроводниках. И тут следует заметить, что написано на сайте самой компании:

Компания СуперОкс создана в 2006 году Андреем Вавиловым для разработки технологии производства высокотемпературных сверхпроводниковых проводов 2го поколения – ВТСП-проводов.

Читать еще:  Блокировка двигателя сигнализацией что это

Выводы делайте сами. Мне пока ясно одно — явно не новички в этой теме, но об их вовлечённости в космические проекты ничего не знаю.

Второе. В двигателях этого типа используется электроразряд. Значит, есть эррозия элементов конструкции. Специалисты «СуперОкс» говорят, что нашли довольно удачную конструкцию катода:

Катод после всех испытаний

Говорится, что катод испытывался суммарно 2500 секунд с максимальным непрерывным временем 140 с. В итоге отмечен низкий износ.

Но, это всё частности. Главное то, что износ от электрокоррозии вообще есть — это влияет на срок службы всего двигателя. На Земле электрод — всего лишь быстро заменяемый расходник, а в космосе он становится непреодолимой проблемой.

Это насчёт работы в составе многоразового космического буксира.

А в итоге мы имеем ещё один прототип электрического реактивного двигателя. Вдобавок к плазменным и ионным, появился магнитоплазмодинамический. Интересным является применение в нём сверхпроводников, хотя ряд вопросов конечно остаётся.

Пока он не впечатляет, да и не обязан — от первого рабочего образца много ожидать не следует. Его задача — отработать основные принципы работы. Первые автомобили ездили не быстрее лошадей. Но, теория говорила, что они могут гораздо больше — вскоре это и произошло.

Здесь — то же самое. Осталось набраться терпения. И пожелать нашим инженерам успехов! 🙂

Реакция читателей:

-(Виталий) Автор, спасибо за статью. Видел эту новость раньше, но у Вас она гораздо лучше рассмотрена. Еще раз, респект ))

А теперь позвольте «ложку дегтя» ))

Вы пишете: «В двигателе применены сверхпроводники. А это означает уменьшение массы магнита в 4 раза по сравнению с медными магнитами в современных электрореактивных двигателях.

Меньше масса — выше ускорение, быстрее долетим!»

Да, масса уменьшится. На 3-5 кг на каждом двигателе. На 20-30 двигателях — на 100 кг. И что нам дадут 100 кг при массе того же «Нуклона» в 20-30 тонн ?

На мой взгляд, гораздо важнее мЕньший расход эл.мощности на 1 Ньютон тяги. У ИД-500 эл.мощность 35 кВт при тяге примерно 0,5 Н. Тут 30 кВт на 1 Н. Т.е. примерно в 2 раза меньше. Значит можно или поставить реактор поменьше (полегче), или увеличить тягу буксира. Вот еще бы уточнить уд.импульсы этого двигателя и ИД-500.

— (Автор) Виталий, применительно к Нуклону — полностью согласен.

Но, во-первых, с миру по нитке — каждый килограмм на счету.

И потом — движки можно и на мЕньшие спутники поставить — там заметнее будет.

А напрямую сравнивать пока рановато — это экспериментальная установка.

Но в целом да — именно бОльшего удельного импульса от этой технологии все и ждут 🙂

1. На мЕньших спутниках будет примерно та же самая проблема. 30 кВт эл.мощности требуют серьезную энергетической установку. С большой массой.

Но, в целом, сокращение массы двигателя — это, конечно, плюс.

2. С одной стороны, сравнивать пока рано. С другой, а как же без сравнения ? Надо же на что-то ориентироваться. Пусть даже с поправкой на дальнейший рост характеристик.

— Виталий, если всё-же настаиваете на сравнении, то я просто повторюсь — первая же опытная установка работает на уровне лучших ионников, которые развиваются не один десяток лет. А если точнее, то даже немного лучше — 0,85Н при потреблении меньше 30 кВт (у ИД-500 больше 30-ти).

Туда же — по расчётам потенциал этих движков — до 200 Н. По крайней мере, в данной разработке прогнозируют не менее 5-6Н. Плазменникам и ионникам это сегодня даже не снится, насколько я знаю.

Нет, конечно круто, когда опытный образец на голову превосходит современные аналоги, но. не всегда так получается — иногда вместо прыжков приходится двигаться потихоньку 🙂

— Спасибо за сравнение. Но тут не хватает удельного импульса. Без него сравнение недостаточно корректное.

5-6 Н — это неплохо, но не главное. Можно поставить 5 ионников, и они дадут эти 5 Н. Вопрос в потреблении энергии и расходе РТ (удельном импульсе). С энергией вроде бы у нового двигателя всё хорошо .

— Виталий, насчёт удельного я же давал в статье — 3763с в одном из режимов. Остальные режимы смотрите в исходной статье — там по-моему ещё что-то было.

Похвастать особо нечем, как видите.

Но, сейчас не импульс важен, а то, что установка вообще заработала. Ну а неплохие выходные характеристики на данном этапе — скорее приятный бонус.

У меня нет данных, сколько там было у первых ионников, но судя по сегодняшним крохам — на порядок точно меньше.

5 ионников можно, но они будут весить и потреблять кратно больше — смысла нет. Вы же сами про важность удельного импульса говорите.

Вот с энергопотреблением да: минус 5кВт при той же мощности — это конечно же радует уже сейчас. Ну и чуть меньшая масса тоже в плюс идёт.

Гораздо больше расстраивает другое — нет данных в рамках чего создана эта установка, был ли на неё заказ или на свой страх и риск сделали.

— Здорово конечно, когда правительство Москвы вкладывается в такие стартапы. Но, стартап должен быть не только интересным и многообещающим, но и встроенным в космическую программу страны — у нас же клановость развита, чужих не жалуют.

То есть, ребятам ещё надо доказать, что они свои, встроиться в систему. А это лишние препятствия.

Ладно, посмотрим что получаться будет — столица России всё-таки вложилась, не кто нибудь. 🙂

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Двигатель Ванкеля. Принцип работы РПД

Достоинства и недостатки РПД

Достоинства:

  • меньшие габариты и масса,
  • меньшее количество деталей (даже в сравнении с двухтактным поршневым ДВС),
  • вдвое большая мощность при тех же габаритах, что и традиционные ДВС,
  • плавность работы в результате отсутствия возвратно-поступательно движущихся частей,
  • возможность потребления низкооктанового бензина.

Недостатки:

  • неэффективный процесс сгорания, а значит — повышение расхода топлива и токсичности отработанных газов,
  • смазка ‘на прогар’, что влечет за собой высокий расход масла,
  • невозможность производства на площадях, предназначенных для выпуска традиционных ДВС,
  • переход на выпуск РПД требует замены подавляющего большинства оборудования.

Роторно-поршневой двигатель покоряет своей простотой: корпус, вал, сам ротор — и все. Правда, существуют проблемы с уплотнениями роторов. На их решение ушли десятилетия, и в конце концов срок службы уплотнений удалось довести до ресурса поршневых колец в ДВС.

К недостаткам следует отнести непривычность двигателя Ванкеля как для ремонтников, так и для владельцев. Этот мотор требует изменения многих привычек. Так, тормозить РПД бесполезно, штурмовать подъемы ‘внатяг’ — тем более. Компактный ротор имеет малую инерцию, в отличие от массивных деталей традиционного ДВС. Частые запуски-выключения ‘забрасывают’ свечи. Непривычен и звук мотора, хотя многие это считают преимуществом.

Куда серьезнее органические недостатки, присущие РПД. Во-первых, это низкая эластичность характеристики и повышенный расход топлива. Последнее объясняется высокими потерями тепла через стенки камеры, далекой от оптимальной. Во-вторых, особенно велик расход масла. Ресурс такого мотора также ниже, чем у традиционного, из-за быстрого износа уплотнений ротора.

Немаловажную роль играет и жесткость внешней характеристики РПД, требующей более частых манипуляций рычагом КПП — на практике это выражается в более ‘коротком’ передаточном ряде, а значит, увеличенным числом передач. Идеальной была бы установка вариатора, но на спортивных машинах ‘автоматы’ не прижились, а на семейноv авто увидеть РПД странно — хотя бы по причине недостаточной экономичности.

Недостатки роторно-поршневых двигателей те же, что и у двухтактных поршневых моторов. Самое забавное, что и ‘лечатся’ многие из этих болезней аналогично. Повышенный ‘аппетит’ — непосредственным впрыском топлива, недостаточная эластичность — изменяемыми фазами и конфигурацией трубопроводов. Что было сделано на двигателе для купе ‘Mazda RX-8’.

Принцип работы двигателя Ванкеля

Функцию поршня в РПД выполняет трехгранный ротор, преобразующий силу давления газов во вращательное движение эксцентрикового вала. Движение ротора относительно статора обеспечивается парой шестерен, одна из которых закреплена на роторе, а вторая — на боковой крышке статора.

Конфигурация рабочих поверхностей ротора и статора — эпитрохоидальная. Рабочая поверхность статора имеет износостойкое покрытие. В вершинах ротора установлены специальные уплотнения, на рабочих поверхностях — выемки, выполняющие роль камер сгорания. Вал вращается в подшипниках, размещенных на корпусе, и имеет цилиндрический эксцентрик, на котором вращается ротор.

Шестерня неподвижно закреплена на корпусе двигателя. С ней в зацеплении находится шестерня ротора. Взаимодействие этих шестерен обеспечивает орбитальное движение ротора относительно корпуса, в результате которого образуются три разобщенных камеры переменного объема. Передаточное отношение шестерен 2:3, поэтому за один оборот эксцентрикового вала ротор поворачивается на 120 градусов. За полный оборот ротора в каждой из камер совершается полный четырехтактный цикл. Крутящий момент получается в результате действия газовых сил через ротор на эксцентрик вала.

Между статором и ротором образуются три камеры, аналогичные надпоршневому пространству ДВС. Процесс впуска начинается, когда вершина ротора пересекает кромку впускного окна, после чего объем камеры возрастает и туда поступает горючая смесь. Когда следующая вершина ротора перекрывает впускное окно, смесь начинает сжиматься, и в момент наибольшего сжатия подается искра — начинается рабочий ход. Затем открывается выпускное окно и отработавшие газы покидают пространство камеры.

Таким образом за один оборот ротора в двигателе происходят три цикла, что делает ненужным использование уравновешивающих устройств, особенно в двухсекционных конструкциях, получивших подавляющее распространение.

В рабочем процессе имеется два слабых звена: высокая нагрузка на уплотнения и избыточная величина динамического перекрытия фаз. Кроме того, конфигурация камеры сгорания далека от оптимальной. В то же время есть и большой плюс. Дело в том, что при повышении оборотов скорость распространения фронта пламени растет быстрее скорости перетекания смеси. В результате требования РПД к октановому числу топлива намного ниже, чем у поршневых моторов.

Особенности конструкции

Принципиально отдельные узлы и системы двигателей не отличаются от аналогов, но некоторые конструктивные решения достаточно оригинальны.

Система турбонаддува

Основной особенностью стало применение на части двигателей двойного наддува, но не с большой и малой турбинами, как это иногда делается, а добавкой механического нагнетателя.

Выделяется несколько режимов работы системы:

  • отсутствие наддува при минимальной нагрузке, компрессоры отключены, воздух идёт через обходной клапан;
  • подключение только механического компрессора, не обладающего инерцией и хорошо справляющегося при средних нагрузках;
  • совместная работа роторного нагнетателя с турбиной при переходе к значительным нагрузкам, что устраняет даже малейшие признаки турбоямы;
  • отключение компрессора и работа турбины на полной мощности при максимальных нагрузках.

Такая гибкость позволяет сохранять максимальную эффективность и минимум аэродинамических потерь в тракте во всём диапазоне оборотов и крутящего момента, выравнивая его полку на внешней скоростной характеристике двигателя.

В последнее время появились достаточно эффективные турбины с изменяемой геометрией и малой инерционностью, что позволило отказаться от достаточно дорогого и массивного механического компрессора.

Система охлаждения

Высокое давление наддува требует охлаждения поступающего в цилиндры воздуха. При его нагреве уменьшается стойкость двигателя к детонации и ухудшается экономичность из-за меньшей плотности горячего газа на впуске. Поэтому в двигателях используется интеркулер – дополнительный радиатор с жидкостным теплообменником.

Подобное решение почти повсеместно применяется в дизельных двигателях, не менее уместно оно и в высокоэффективных бензиновых ДВС.

Система впрыска

Бензин распыляется прямо в цилиндры через многоточечные форсунки, что обеспечиваем хорошую гомогенизацию смеси. Чем выше давление впрыска, тем этот процесс эффективней, поэтому используются инжекторы и топливный насос очень высокого давления, до 150 атмосфер.

Направление факела всех отверстий в форсунках ориентировано на днище поршня, что позволяет осуществлять послойное смесеобразование за счёт отражения потока и направления его к свече зажигания. Изменение момента впрыска реализует все прочие выше перечисленные режимы.

Блок цилиндров

Существуют разные версии блоков, в том числе и более прочные чугунные, но в последнее время используются алюминиевые блоки с запрессованными чугунными гильзами.

Такие решения применяются и во многих других моторах, не всегда удачно. Дело в том, что уменьшение толщины стенок гильз для улучшения теплоотдачи ведёт к короблению и задирам.

Не во всех двигателях семейства эту проблему удалось полностью решить, особенно при использовании коротких поршней с минимальными потерями на трение, но это беда почти всех современных двигателей.

Водород и гелий в качестве топлива

Получение высокой мощности, конечно же, необходимо, однако нужно понимать, что использование водорода или гелия достаточно опасно. Водород, к примеру, сам по себе достаточно взрывоопасен, а при высоких температурах он создает соединения, которые называются металлогидритами. Это происходит, когда водород растворяется в металле. Другими словами, он способен разрушить цилиндр изнутри.

Кроме того, и водород, и гелий – это летучие вещества, которые характеризуются высокой проникающей способностью. Если говорить проще, то они достаточно легко просачиваются сквозь практически любые уплотнения. А потери вещества означают потери в рабочем давлении.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector