2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое объемная эффективность двигателя

КПД двигателя внутреннего сгорания – определение и сравнение + видео » АвтоНоватор

Среди множества характеристик механизмов в автомобиле важное значение имеет КПД двигателя. В этой статье рассказываем подробнее про бензиновые и дизельные движки.

  1. Двигатель внутреннего сгорания
  2. КПД двигателя – что это такое
  3. Бета коэффициент акции
  4. Вопросы, которые задают каждый день
  5. Видео-ответ
  6. Дополнительная информация
  7. Смотрите также
  8. внешние ссылки
  9. Что еще у нас интересного
  10. Максимальное значение кпд идеального двигателя

Выявить падение эффективности значительно легче, поскольку этот признак дает о себе знать в виде замедленной работы. Во избежание лишних затрат времени и денежных средств, советуем не проводить сразу качественную оценку потерь. При слишком длительном производственном цикле лучше заменить гидронасос или мотор новым оборудованием.

В отдельных случаях количественная оценка гидроузла является обязательным мероприятием, которое позволит сравнить заводские характеристики с фактическими данными.

Эффективность работы насосов и двигателей определяется тремя критериями:

  • Объемный КПД;
  • Механический/гидравлический КПД;
  • Общий КПД.

Объемный КПД

Объемный КПД – это отношение реального расхода жидкости к теоретическому значению. Для определения теоретического значения расхода необходимо умножить объем перерабатываемой жидкости за один оборот на количество оборотов в минуту, выполняемых насосом. Например, если аппарат объемом 100 см3 имеет скорость 1000 об/мин, его теоретический расход достигнет 100 л/мин.

Для определения фактического расхода используется расходомер, после чего полученные показатели соотносятся с теоретическим расходом. Так, при фактическом расходе 90 л/мин и давлении 207 бар, объемный КПД гидронасоса составит 90%.

Чаще всего объемный КПД определяет техническое состояние, а именно степень утечки жидкости в результате деформаций или естественного износа агрегата. Но, не зная теоретического расхода, установленный фактический расход не представляет для нас важности.

Механический/гидравлический КПД

Эта характеристика вычисляется путем деления теоретического крутящего момента, необходимого для приведения гидронасоса в движения, на реальный крутящий момент. 100% механический/гидравлический КПД говорил бы о прокачке жидкости при нулевом давлении и отсутствующем крутящем моменте, что противоречило бы законам механического и жидкостного трения.

Теоретический крутящий момент рассчитывается методом математических вычислений. Для рассмотренного выше случая показатель будет равен 329 Нм. Фактический крутящий момент, как и расход, измеряется при помощи прибора (динамометра). Например, если значение характеристики равна 360 Нм, механический КПД будет достигать 91% (329/360*100 = 91%).

Общий КПД

Представляет собой произведение объемного и механического/гидравлического КПД (в нашей ситуации показатель равен 82%). В таблице ниже рассмотрены типовые значения общего КПД для наиболее распространенных моделей насосов:

Тип насосаОбщий КПД
Шестеренный насос с внешним зацеплением85%
Шестеренный насос с внутренним зацеплением90%
Пластинчатый насос85%
Радиально-поршневой насос90%
Аксиально-поршневой насос91%
Аксиально-поршневой насос наклонным блоком цилиндров92%

Производители гидравлических систем используют значение объемного КПД для вычисления фактического расхода насоса при давлении, необходимом для начала работы узлов.

При вычислении объемного КПД по результатам фактического тестирования, необходимо учитывать тот факт, что различные каналы утечки в насосе чаще всего являются одинаковыми. Таким образом, если испытание насоса проводится при меньших показателях давления или не максимальной мощности, значение КПД будет отличаться до тех пор, пока утечки являются константой.

Для примера возьмем случай с насосом переменного объема, имеющим расход жидкости 100 литров в минуту. При работе на полной скорости и расходе 90 л/мин, объемный КПД будет равен 90%. Если работа помпы будет оцениваться при аналогичном давлении и температуре жидкости, но при половине рабочего объема, потери на внутренние протечки будут равны 10 л/мин, а объемный КПД составит 80%. Исходя из этого мы видим, что внутренние утечки – это постоянная величина, при одинаковых условиях объемный КПД будет достигать 90% при полном объеме и 0% при объеме 10%.

Чтобы объяснить такую закономерность, необходимо рассматривать каналы утечек в качестве отверстий определенного диаметра. Скорость перемещения масла через эти отверстия определяется колебаниями давления и вязкостью жидкости. При равных показателях степень утечки всегда будет неизменной, независимо от скорости вращения вала и объема насоса.

Для проведения качественной оценки гидравлических насосов и моторов обращайтесь в компанию «Гидротехтрейд».

РЕМОНТ И ОБСЛУЖИВАНИЕ
ЛЮБОЙ ГИДРАВЛИКИ

Когда двигатель GDI работает с более высокими нагрузками или на более высоких оборотах, имеет место впрыск топлива во время такта впуска. Это оптимизирует сгорание благодаря гомогенной и более холодной воздушно-топливной смеси, которая минимизирует возможность детонации.

В основе конструкции двигателя GDI лежат четыре технических особенности:

  • Вертикально прямой канал ввода — поставляет оптимальный поток воздуха в цилиндр
  • Поршень с криволинейной вершиной — управляет сгоранием, помогая формировать воздушно-топливную смесь
  • Топливный насос высокого давления — обеспечивает давление необходимое для прямого впрыска в цилиндр
  • Вихревой инжектор высокого давления — управляет испарением и дисперсией топливной струи

Эти фундаментальные технологии, объединенные с другими уникальными технологиями управления подачей топлива, позволили компании Mitsubishi достигнуть обеих целей разработки потреблении топлива у двигателя GDI ниже, чем у дизельных двигателей, а выходная мощность выше, чем мощность обычных двигателей MPI.

Основы теплотехники

Действительная индикаторная диаграмма

Полезная работа, которую совершает поршень при перемещении внутри цилиндра, получается в результате частичного преобразования теплоты при сгорании топлива. Эту работу называют индикаторной.
Индикаторная работа соответствует площади, заключенной между кривой сжатия и кривой расширения на индикаторной диаграмме (рис. 1).
Площадь на индикаторной диаграмме, заключенная между кривыми впуска и выпуска, соответствует работе, затраченной на процесс газообмена (насосные ходы поршня). Как известно, точки с и z‘, полученные на расчетной индикаторной диаграмме, не соответствуют реально протекающим процессам сжатия и сгорания. В результате предварительного открытия клапанов и запаздывания их закрытия относительно ВМТ и НМТ поршня часть площади, соответствующей индикаторной работе, выпадает из индикаторной диаграммы (пунктирная линия b’bb”).

В результате площадь действительной индикаторной работы (сплошные линии) оказывается меньше расчетной (штриховые линии).
Для получения действительной индикаторной диаграммы используют коэффициент скругления φi . Значения коэффициента скругления в зависимости от типа четырехтактного двигателя могут принимать значения от 0,92 до 0,97.

Индикаторные показатели

Индикаторными показателями называют показатели, характеризующие работу, совершаемую газами в цилиндре двигателя. Эти показатели определяют эффективность использования рабочего объема двигателя и степень преобразования выделяемой теплоты в полезную работу внутри цилиндров.
К индикаторным показателям относятся:

  • индикаторная мощность Ni ;
  • среднее индикаторное давление pi ;
  • индикаторный КПД ηi ;
  • удельный индикаторный расход топлива gi .

Среднее индикаторное давление

Среднее индикаторное давление – это условное постоянное по величине избыточное давление, которое, действуя на поршень в течение одного хода, совершает работу, равную работе газов за весь цикл:

где Li – работа газов за один цикл в одном цилиндре двигателя; pi – среднее индикаторное давление; F – площадь поршня; S – ход поршня; Vh – рабочий объем цилиндра.

Тогда можно записать:

Т. е. среднее индикаторное давление численно равно работе газов за цикл, отнесенной к единице рабочего объема. Таким образом, этот показатель оценивает степень эффективности использования объема цилиндра.

Значения pi могут быть получены расчетным путем или по индикаторным диаграммам. При расчете используют параметры характерных точек расчетных циклов. При этом работа расчетного цикла может быть выражена как разность работ расширения и сжатия:

где L’yz + L’zb — индикаторная работа расширения расчетного цикла двигателя, L’ac – работа сжатия.

Так как работа (и среднее индикаторное давление) действительных циклов на самом деле меньше, чем расчетных циклов, то с учетом коэффициента скругления φi индикаторной диаграммы:

С помощью индикаторной диаграммы можно найти среднее индикаторное давление, обозначив индикаторную работу через площадь Fi :

Читать еще:  4g69s4n двигатель ремонт своими руками

где mр – масштаб диаграммы по оси ординат; l – длина диаграммы по оси абсцисс.

Индикаторная мощность

Индикаторная мощность Ni – это мощность, которая развивается газами внутри цилиндра. В общем случае мощность – это скорость выполнения работы, т. е. работа, совершаемая в единицу времени. Работа газов в цилиндрах двигателя за 1 мин рассчитывается по формуле:

где n – частота вращения коленчатого вала; τ – число тактов; i – число цилиндров.

Тогда работа, совершаемая газами за 1 сек, т. е. индикаторная мощность будет равна:

Индикаторный КПД

Индикаторный КПД ηi – это отношение теплоты, преобразованной в индикаторную работу Qi к общему количеству теплоты затраченного топлива Q1 :

где Gтц – цикловая подача топлива; Hи – низшая теплотворная способность топлива.

Индикаторные КПД характеризует экономичность действительного цикла. Он всегда меньше термодинамического КПД вследствие дополнительных потерь в действительном цикле, которые не учитываются при определении ηi . К таким потерям относятся теплоотдача в стенки цилиндра, потери на неполноту и несвоевременность сгорания топлива, на диссоциацию (распад) продуктов сгорания.

Для оценки степени уменьшения использования теплоты в действительном цикле по сравнению с термодинамическим циклом используют относительный КПД ηo :

Индикаторный удельный расход топлива

Другим показателем, характеризующим экономичность действительного цикла, является индикаторный удельный расход топлива gi :

где Gт – часовой расход топлива.

Удельный индикаторный расход топлива и индикаторный КПД связаны между собой отношением:

Из уравнения (6) получим:

Подставив это выражение в уравнение (2), получим:

Выразив цикловую подачу топлива в зависимости от цикловой подачи воздуха и коэффициента избытка воздуха, и подставив эти выражения в предыдущее уравнение, получим:

Факторы, влияющие на индикаторные показатели

На индикаторные показатели оказывают влияние следующие факторы:

1. Топливо

Изменение фракционного состава топлива в зависимости от способа смесеобразования приводит к ухудшению или улучшению индикаторных показателей.

2. Состав смеси

Для дизельных и карбюраторных двигателей состав смеси оказывает различное влияние (рис. 2).
У карбюраторного двигателя наибольшее значение индикаторного КПД достигается при α = 1,05…1,1, когда имеет место полное и достаточно быстрое сгорание топлива.
У дизелей вследствие недостатков внутреннего смесеобразования топлива полностью сгорает при α = 2,5…4,0, чему способствует наибольшее значение индикаторного КПД. Уменьшение коэффициента избытка воздуха от указанных значений приводит к недогоранию топлива, увеличению тепловых потерь с воздухом, не участвующим в горении.

3. Угол опережения зажигания

С увеличением угла опережения зажигания увеличивается максимальное давление сгорания, «жесткость» работы, потери теплоты в окружающую среду. При позднем зажигании процесс сгорания смещается на процесс расширения, из-за чего падает давление и с ним индикаторная работа. Поэтому КПД снижается при любом отклонении угла опережения зажигания от оптимального.

4.Частота вращения коленчатого вала

Рост частоты вращения коленчатого вала приводит к увеличению индикаторного КПД, поскольку сокращается время цикла и суммарная теплоотдача в стенки цилиндров. Однако при некоторых максимальных значениях частоты вращения коленчатого вала индикаторный КПД падает, так как догорание топлива все более завершается на линии расширения (по индикаторной диаграмме).

5. Нагрузка

У карбюраторных двигателей наибольшие значения индикаторного КПД соответствуют средним нагрузкам при экономичном составе смеси 1,05 α α α , чем дизели с однополостными камерами сгорания. Поэтому, несмотря на меньшую величину индикаторного КПД, среднее индикаторное давление двигателей с раздельными камерами сгорания не уступает среднему индикаторному давлению двигателей с неразделенной камерой сгорания.

7. Степень сжатия

Степень сжатия влияет на индикаторный КПД также, как и на термодинамический КПД, поэтому при проектировании двигателей стремятся к увеличению степени сжатия. Однако у карбюраторных двигателей увеличение степени сжатия ограничено детонацией. У дизельных двигателей индикаторный КПД при увеличении степени сжатия более некоторых оптимальных значений будет изменяться незначительно.

8. Климатические условия (окружающая среда)

При увеличении температуры окружающей среды и снижении давления уменьшается наполнение цилиндров по массе. При неизменной подаче топлива уменьшается коэффициент избытка воздуха, что ведет к снижению показателей индикаторного КПД и индикаторного давления.

КПД электродвигателей

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Электрическими двигателями переменного или постоянного тока комплектуются приводы станков, насосов и вентиляторов, а также других механизмов, используемых на предприятиях тяжелой и легкой промышленности. Рентабельность производства напрямую зависит от себестоимости продукции, на которую в большой степени влияет эффективность эксплуатации оборудования, поэтому КПД и мощность электродвигателя являются основными параметрами, на основании которых выполняется подбор привода.

Определение КПД электродвигателя

Принцип работы любой электрической машины основан на преобразовании энергии тока, протекающего по обмоткам статора и создающего магнитное поле, во вращение ротора. Коэффициент полезного действия (КПД) электродвигателя определяется соотношением вырабатываемой им механической мощности на валу (p2) к полной мощности, потребляемой из сети (p1) и выражается в процентах:

Исходя из формулы, следует, что чем ближе этот параметр к единице, тем выше будет эффективность использования оборудования.

Факторы, влияющие на величину КПД

Коэффициент полезного действия никогда не может быть равным единице, так как существуют неизбежные потери, снижающие полезную мощность. Они делятся на три группы:

  • электрические;
  • магнитные;
  • механические.

Электрические потери зависят от степени нагрузки двигателя и являются следствием нагрева обмоток статора, вызванного работой тока по преодолению электрического сопротивления проводников, из которых они выполнены. Поэтому максимальный КПД электродвигателя достигается, когда нагрузка на двигатель составляет 75% от максимальной расчетной величины.

Магнитные потери происходят из-за неизбежного перемагничивания активного железа статора и ротора, а также возникновения в нем вихревых токов.

Третья группа обусловлена наличием трения в подшипниках, на которых вращается вал, а также сопротивлением, оказываемым воздухом крыльчатке вентилятора и самому ротору (якорю). Из-за наличия щеточно-коллекторного узла КПД электродвигателя постоянного тока несколько ниже коэффициента полезного действия машин с короткозамкнутым ротором. Это также относится к асинхронным электродвигателям с фазным ротором из-за дополнительного трения щеток об контактные кольца.

Способы повысить КПД двигателя

Следует помнить, что реальный коэффициент полезного действия может несколько отличатся от паспортных величин, указанных на шильдике двигателя. Чтобы выполнить расчет КПД электродвигателя в реальных условиях эксплуатации, необходимо учитывать неравномерность распределения питающего напряжения в фазах. В зависимости от величины асимметрии падение полезной мощности может достигать 5-7%.

Увеличение КПД электрической машины возможно только за счет снижения потерь и контроля качества силовой сети.

Механические потери можно уменьшить благодаря более качественным подшипникам, установки крыльчатки вентилятора, выполненной из современных материалов для уменьшения сопротивлению воздуху. Нагрев обмоток можно уменьшить благодаря использованию обмоточных проводов, выполненных из очищенной меди, имеющих меньшее сопротивление.

Снизить потери на перемагничивание активного железа и минимизировать влияние вихревых токов можно используя для набора сердечника необходимо использовать качественную электромагнитную сталь с надежной изоляцией. Кроме того, ведутся работы по разработке наилучшей геометрии зубцов статора, благодаря которым будет увеличена концентрация магнитного поля.

В реальности КПД асинхронного электродвигателя можно несколько увеличить за счет использования частотного преобразователя, позволяющего оптимизировать расход электроэнергии. Следует помнить, что эффективность эксплуатации двигателя с КПД 98% сильно упадет, если его использовать для приведения в движения механизма, имеющего более низкий коэффициент полезного действия.

Почему у двигателя внутреннего сгорания все еще нет серьезной альтернативы, узнал Кирилл Журенков

У двигателя внутреннего сгорания, без которого невозможно представить современный транспорт, юбилей — 195 лет. Однако полноценной замены имениннику так и не изобрели

Современный автомобиль, каким мы его знаем, рождался, наверное, целый век, и каждый из его дней рождения — исторический. Судите сами: 125 лет назад двумя венгерскими учеными, Донатом Банки и Яношем Чонка, запатентован карбюратор — устройство, где готовится горючая смесь для автомобильного двигателя. Долгое время его изобретателем вообще-то считался немец Вильгельм Майбах, запатентовавший карбюратор раньше венгерских коллег, и лишь после специальной экспертизы выяснилось — Банки и Чонка опередили его с публикацией. Счет шел на месяцы!

Но, пожалуй, еще важнее другая дата: в 1823 году, то есть 195 лет назад, другой инженер, британец Сэмуэль Браун, запатентовал первый получивший успех и коммерческое приложение двигатель внутреннего сгорания (ДВС)! Оговоримся: и на этот почетный титул — изобретателя ДВС — также претендует множество инженеров, выбирай любого. Вот, к примеру, один из претендентов — француз Жозеф Нисефор Ньепс больше известный как один из изобретателей фотографии. Он еще в 1807 году вместе с братом создал прототип ДВС, названный пирэолофором. Пирэолофор был установлен на корабль и успешно испытан, после чего братьям выдали патент, подписанный самим Наполеоном. Был в истории ДВС и русский след: бензиновый двигатель внутреннего сгорания с электрическим зажиганием — разработка российского конструктора сербского происхождения Огнеслава Костовича, известного проектами дирижабля, вертолета и даже рыбы-лодки.

Как немецкий автопром реагирует на бум электромобилей

Парадокс в другом: ни один из изобретателей этого чуда техники не был уверен, что его усилия пригодятся. Сегодня об этом уже не помнят, но с ДВС тогда конкурировали паровой и… электрический двигатель, изобретенный еще в 1828 году!

— Период, когда люди выбирали тип двигателя для безлошадных повозок (так называемое осевое время автомобилизма), пришелся как раз на конец XIX века,— говорит шеф-редактор журнала «Авторевю» Леонид Голованов.— Так вот, вплоть до середины 1900-х параллельно выпускались машины со всеми тремя типами силовых установок: ДВС, электроприводом и паровым двигателем. В результате победил двигатель внутреннего сгорания, причем заслуженно — он оказался эффективнее, проще в эксплуатации и более пригоден для массового производства. Но главное — сочетание энергоемкости, цены и скорости заправки, которое обеспечивало моторное топливо. Альтернативы этому не было!

О «нефтяном факторе» в успехе двигателя внутреннего сгорания говорит и декан транспортного факультета Московского политехнического университета Пабло Итурралде. По его словам, выпуск машин на ДВС в начале ХХ века получил поддержку у нефтяной отрасли — ей нужен был мощный потребитель производимой продукции, и автомобили, работающие на бензине, идеально подошли для этого.

«Топливо-изгой», «Европа отказывается от двигателей внутреннего сгорания», «Объявлена война дизелю»… Европейские СМИ предупреждают: в Старом Свете решили всерьез взяться за ДВС. Повод нашелся в 2015-м, когда в результате так называемого Дизельгейта выяснилось: крупнейший европейский производитель дизельных моторов занижал количество вредных выбросов во время тестов. И вот время перемен: к примеру, в Великобритании запретить продажи новых автомобилей на бензиновых или дизельных ДВС собираются уже к 2040 году. А Норвегия ставит дедлайн еще раньше — на 2025 год… Чем собираются заменить ДВС? Конечно же, старым добрым электромотором, но и тут все не однозначно.

— Конец ДВС приближают сразу несколько факторов: ужесточившиеся требования к токсичности отработавших газов, истерика по поводу антропогенной природы глобального потепления и, безусловно, электромобили,— уверен Леонид Голованов.— Впрочем, до массового распространения электромобилей еще далеко, и сдерживает его отсутствие аккумуляторных батарей с достаточной энергоемкостью.

Иными словами, современные литий-ионные батареи не способны обеспечить переход на массовую электромобилизацию — нужен качественный скачок, батареи нового типа, например на основе графена. Вот только когда их изобретут. Как открыт и вопрос о перспективах так называемых гибридов — автомобилей, где электродвигатель совмещен с ДВС.

Приговор специалистов: человечество на перепутье. Жить с ДВС больше не хочется, а переходить на электромобили не получается, да и последствия такого перехода никто толком не просчитал.

— Вся инфраструктура наших городов рассчитана под двигатели внутреннего сгорания, и перемены идут с большим трудом: посмотрите на Европу — станции для подзарядки встречаются там гораздо реже, чем автозаправки,— говорит Пабло Итурралде из Московского политеха.— Прибавьте к этому скорость самого процесса — чтобы заправить обычный автомобиль, у вас уйдет пять минут. А для зарядки электромобиля понадобится минимум часа два. Так что переход на новую инфраструктуру в перспективе довольно трудозатратен: всегда есть соблазн потратить эти деньги на что-то другое, например на развитие общественного транспорта.

Леонид Голованов, в свою очередь, уверен, что переход на электромобили неизбежен. Но и он соглашается: последствия такого перехода будут столь масштабны, что сравнить их можно разве что с появлением беспилотных электрических робомобилей. Попробуем представить этот транспорт будущего: никаких дилерских сетей, автозаправочных станций, водителей и даже автослесарей — «умные» машины будут сами «сообщать» в специализированные сервисы о поломках тех или иных систем. Есть и более радикальный взгляд: мол, двигатели будущих робомобилей почти не будут ломаться, а на старомодные ДВС, которые мог разобрать любой мальчишка, мы станем любоваться разве что в музеях. Впрочем, до этого еще надо дожить — или доехать.

Экспертиза

Игорь Моржаретто, партнер аналитического агентства «Автостат», автоэксперт

Появление двигателя внутреннего сгорания (ДВС) — это новый этап промышленной революции, перевернувший всю мировую экономику. До этого она пребывала в полусредневековом состоянии, а с появлением двигателя внутреннего сгорания и дешевого автомобиля, который мог доставить товары и грузы по всему миру на дальние расстояния, изменилась коренным образом. Изменилась и жизнь людей. Специалисты называют это транспортной доступностью «по Форду»: появилась возможность купить автомобиль и поехать на нем куда-то.

Так вот, с моей точки зрения, КПД двигателя внутреннего сгорания далеко не исчерпан. За последние 10–20 лет его параметры очень сильно изменились: он стал более экономичным, мощным, экологичным. К сожалению, сейчас сворачиваются дальнейшие разработки по ДВС, особенно по дизелю. Все кричат, что наше светлое будущее — это электродвигатели. Но перспективы есть и в других отраслях, например в нескольких странах работают над водородными топливными элементами. Возможно, какие-то прорывы будут и с двигателем на ядерном топливе…

А вот что касается электромобилей, то с ними еще очень много нерешенных вопросов.

Сегодня максимум, который он может преодолеть,— это 300 км при теплой погоде и ровной дороге без пробок. Это много, но, к примеру, в условиях России явно недостаточно.

К тому же современные аккумуляторы чудовищно дороги. Если не будет государственной поддержки, электромобиль просто никто не купит: сегодня он стоит в 2,5—3 раза дороже, чем автомобиль с ДВС того же класса. И соответственно, все те продажи, которые идут в мире, происходят при поддержке разных государственных программ. Когда будет создан дешевый и мощный аккумулятор? Никто не знает. Его обещали создать и год, и пять лет назад…

Еще одна принципиальная проблема, связанная с электромобилями, заключается в том, что при выработке электроэнергии все равно расходуется топливо, просто другое. 60 процентов электростанций (а это они вырабатывают электроэнергию, которая используется для зарядки электромобилей.— «О» ) в мире сегодня, напомню, работает на угле и, соответственно, загрязняют окружающую среду.

Нельзя не упомянуть и об отсутствии программы утилизации аккумуляторов. Одна компания — мировой лидер по производству электромобилей — после 7 лет эксплуатации забирает эти аккумуляторы и предлагает их владельцам частных домов в качестве аварийного источника энергии. То есть утилизировать их не умеют… В общем, как мне кажется, энтузиазм стран и правительств по поводу электромобилей несколько преждевременен: без госпрограмм поддержки все это долго не продержится. А вот прощаться с ДВС я бы не торопился…

Брифинг

Торстен Мюллер-Отвос , гендиректор английской компании, выпускающей автомобили класса люкс

Мы представим электрическую модель в следующем десятилетии, однако не будем спешить убирать ДВС из портфолио. Переход к электрокарам будет постепенным, и какое-то время они пойдут параллельно. Беспилотники станут для нас интересны тогда, когда они будут функциональными, удобными в использовании, не требующими усилий и полностью автономными, то есть тогда, когда они смогут полностью заменить водителя. Вот тогда мы скажем: «Давайте сделаем это».

Источник: «Автопилот Онлайн»

Александр Фертман , директор по науке, технологиям и образованию фонда «Сколково»

Те горизонты, которые сегодня нарисованы в Европе по поводу отказа от двигателя внутреннего сгорания, наводят на мысль, что это серьезный технологический рывок. А главное, что создается огромный рынок. Новые виды аккумуляторов постоянно разрабатываются, эта тема одна из самых инвестируемых, если не говорить об IT-секторе. И это не только сама батарея, это и система управления. Здесь, кстати, у России действительно есть интересные проекты. Важно не только то, как вам отдает энергию батарея, но и то, как вы управляете ячейками, чтобы ячейки разряжались одновременно, равномерно.

Источник: «Эхо Москвы»

Коджи Нагано , автодизайнер

— Каким будет автомобиль лет через 30?

— Думаю, внешний вид автомобилей будет сильно зависеть от типа двигателя. Но, как и раньше, автомобилю нужен будет кузов, внутреннее пространство, колеса. Если говорить об автомобиле будущего, то есть такая жутко интересная вещь, как 3D-принтер. И я могу себе представить, что скоро каждый человек сможет создать автомобиль у себя дома, просто напечатать именно тот, который нужен ему. Возможно, он нарисует этот автомобиль сам или использует готовый дизайн.

Понятие КПД электродвигателя

Что такое КПД электродвигателя и его простейшая формула

Эффективность работы любого электропривода, в первую очередь, определяется коэффициентом полезного действия электродвигателя (КПД). Говоря простым языком, электрическая машина, потребляя электрическую энергию, преобразует её в механическую для работы различных устройств, станков, инструментов и проч. Соотношение величин полезной механической мощности на валу двигателя (Р 2 ) к мощности, потребляемой из сети (Р 1 ), и есть КПД (η). КПД является номинальной величиной и указывается в процентах: η = (Р 2 / Р 1 ) х 100%.

Совершенно очевидно: чем большая механическая мощность развивается на валу электродвигателя, тем больше полезной работы выполняется и выше КПД электрической машины .

Важность такого показателя как КПД обусловлена прежде всего тем, что около 70% вырабатываемой во всём мире электроэнергии потребляется электродвигателями, начиная от простейших бытовых электроприборов до вентиляционных установок и приводов оборудования крупнейших предприятий.

Величины КПД современных электродвигателей

У большинства современных электродвигателей КПД лежит в пределах 80-90%. Нередко встречаются маломощные модели с КПД до 75%.

Для машин, работающих в особых условиях, современные технологии позволяют увеличивать КПД до 96%. Это достигается не только за счёт их высокоточного производства, но и благодаря использованию дорогостоящих материалов для сердечников, перемагничивание которых не сопряжено с высокими энергетическими затратами.

Факторы, влияющие на изменение КПД электрической машины

Сразу следует сделать уточнение: КПД электропривода никогда не превышает 100%.

Это объясняется расходом потребляемой мощности на нагрев обмоток двигателя, перемагничивание статора (в асинхронных двигателях), вихревые токи, механическое сопротивление при движении ротора.

Нагрев обмоток двигателя – явление закономерное. Из курса физики известно:

  1. при прохождении электрического тока проводник нагревается;
  2. чем однороднее среда, тем легче происходит теплоотдача.

Если с первым пунктом всё ясно, то пункт 2 требует дополнительных объяснений. Традиционно внимание акцентируется на том, что пропитка обмоток статора делается для их защиты от влияния влаги или агрессивной среды. Но также следует учитывать, что после пропитки не остаётся свободных зазоров между обмоткой и сердечником статора, а это позволяет значительно увеличить теплоотдачу и снизить нагрев во время работы. Для этой же цели предусмотрена такая конструктивная особенность как монолитная отливка корпуса с охлаждающими рёбрами, что в значительной мере стабилизирует рабочий нагрев электропривода и препятствует снижению КПД.

Бывает так, что во время работы электродвигателя наблюдается стремительный рост температуры. Зачастую это происходит из-за замыкания в обмотках статора .

Расчётная температура нагрева для двигателей класса “А” лежит в пределах 90℃, для класса “В” не превышает 110℃.

Любая электрическая машина – это воплощение взаимодействия электрических и магнитных полей. Поэтому в обязательном порядке следует учитывать такое явление как перемагничивание сердечника статора в результате изменения направления тока в обмотках. Чтобы не углубляться в теорию, достаточно вспомнить, что магнитная индукция (В) запаздывает от изменения напряжённости магнитного поля (Н). Эта зависимость отражается на графике под названием “петля гистерезиса”. Дешёвые материалы для сердечников почти всегда имеют широкий график, что указывает на большие энергозатраты на более длительное перемагничивание. И наоборот: чем уже петля гистерезиса, тем быстрее перемагничивается сердечник, и выше КПД двигателя.

Вихревые токи или токи Фуко (иногда можно встретить термин “паразитарные токи”) возникают в металлических элементах там, где есть переменное магнитное поле. Согласно закону Ленца они являются причиной наведения магнитных потоков, противодействующих рабочему магнитному потоку вокруг катушек. Понятно, что это влияет на крутящий момент и вызывает дополнительный нагрев двигателя, снижая КПД.

Для уменьшения потерь от вихревых токов надо увеличить электрическое сопротивление магнитопровода. Поэтому магнитопроводы и сердечники якорей набирают (шихтуют) из очень тонких (до 0,5 мм) пластин электротехнической стали, иногда с добавлением кремния, покрытых специальным лаком для их изоляции друг от друга. До сих пор существуют производственные участки, где для этой цели применяют тяжёлый ручной труд.

Механические факторы снижения КПД электродвигателя возникают в результате конструктивных изменений, трения в подшипниках, воздушного сопротивления

Нередко в процессе эксплуатации наблюдаются искривление вала и другие дефекты, вызывающие вибрации на опорных подшипниках ротора, и, соответственно, увеличение механического сопротивления.

Бывает так, что в случае заводского брака при изготовлении обмоток (несоблюдении расчётного количества витков одной из обмоток) нарушается плавность хода ротора, что тоже сказывается на эффективности работы электродвигателя. (Утверждение, что опытный электромеханик определяет эту неполадку на слух, является правдой.)

Также следует указать на недопустимость превышения номинальной нагрузки , как на один из факторов снижения КПД. В этом случае нагрев элементов электродвигателя приближается к критическому, и коэффициент полезного действия начинает снижаться.

Важно помнить: никогда производитель электродвигателей не указывает КПД при максимальной (предельной) нагрузке на валу электрической машины. В техническом паспорте прописывается величина КПД при номинальной нагрузке .

Может ли КПД быть более 100%?

Если говорить об электродвигателях, то следует однозначно заявить: нет!

Выше уже отмечалось, что в электрических машинах мы сталкиваемся с энергией магнитного поля, электрической энергией, тепловой и механической. Достаточно минимальных знаний из области физики и основ электротехники, чтобы раз и навсегда усвоить: преобразованию одного вида энергии в другой всегда сопутствуют процессы обратной направленности. Для примера можно вспомнить токи Фуко.

Существует ещё один важный аргумент в пользу утверждения о невозможности достижения КПД свыше 100%. На данном этапе развития человечество не обладает технологиями производства универсальных материалов, которые не нагревались бы в процессе работы или демонстрировали молниеносное перемагничивание, а также не подвергались бы механической усталости.

Многочисленные энтузиасты не оставляют попыток создать устройства, которые могли бы, выполнять механическую работу и одновременно вырабатывать электроэнергию, покрывая потери и собственные энергозатраты. При этом они не учитывают элементарный принцип обратимости электрических машин: либо генератор, либо двигатель.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector