Что такое комбинированный двигатель
Камера сгорания двигателя
Материал из ТеплоВики — энциклопедия отоплении
Камера сгорания двигателя — объём, образованный совокупностью деталей двигателя в котором происходит сжигание горючей смеси. Конструкция камеры сгорания определяется условиями работы и назначением механизма; как правило используются жаропрочные материалы. В зависимости от температуры, развиваемой в камере сгорания непрерывного действия, в качестве конструкционных материалов для их изготовления применяют:
- до 500 °С — хромоникелевые стали;
- до 900 °С — хромоникелевые стали с добавкой титана;
- выше 950 °С — специальные материалы.
Камера сгорания — это замкнутое пространство, полость для сжигания газообразного, или жидкого топлива в двигателях внутреннего сгорания.
Камера сгорания газотурбинного двигателя — устройство, в котором в результате сгорания топлива повышается температура поступающего в него воздуха (газа).
Достоинства и недостатки чугунных моторов
Чугунные блоки цилиндров отличаются высокой прочностью и износоустойчивостью. В цилиндры запрессовывались гильзы из легированного чугуна, которые обладали гораздо большей прочностью, чем сам блок. Такая гильза могла проходить 300-400 тыс. км, а затем растачивалась под новый размер поршней.
Однако у чугунных моторов есть минусы. Главный — это их вес. Растет расход топлива, и увеличиваются вредные выбросы в атмосферу. Поэтому инженеры стали задумываться над возможностью снижения массы. Еще в 1930-е годы советские мотористы разработали дизельный двигатель для авиации, где блок цилиндров изготавливался из алюминия. Силовые агрегаты стали легче на треть.
Долгое время в автомобилестроении применялось комбинированное решение: двигатели с блоком из алюминия и гильзами в цилиндрах из чугуна.
Однако такие агрегаты не могли долго работать на высоких оборотах. При росте температур алюминий и чугун расширяются неодинаково, что может привести к короблению и потере герметичности прокладок. Поэтому в автоспорте стали переходить на полностью алюминиевые двигатели, в которых роль гильз выполнял слой высокопрочного термостойкого напыления.
А где же воз?
Итак, в огромной стране, практически не осталось инфраструктуры для производства поршневых двигателей малой мощности. Таких, которые были бы способны поднять нашу малую авиацию и поставить ее что называется «на крыло».
Однако выход есть и из этой ситуации. Выход быть может не самый быстрый, и простой, но есть. Это разработка своих, отечественных микро и минидвигателей ГТД (газотурбинный двигатель).
Огромные холдинги, консорциумы и всевозможные ФГУП (кто не знает это Федеральное Государственное Унитарное Предприятие), изучают проблему, разрабатывают концептуальные проекты, создают предприятия с иностранным участием и осваивают государственные инвестиции. Вероятно, по прошествии энного количества времени мы на выходе всех этих корпоративных усилий и получим какой-то готовый продукт.
ЦИАМ ведет НИОКР
ФГУП «Центральный институт авиационного моторостроения им. П.И.Баранова» широким фронтом ведет НИОКР создания перспективных газотурбинных и поршневых двигателей в интересах разработчиков беспилотных летательных аппаратов, самолетов и вертолетов малой авиации. «АвиаПорт» приводит систематизированное изложение выступлений начальника сектора ЦИАМ (малоразмерные ГТД) Владимира Ломазова и начальника сектора ЦИАМ (ПД) Александра Костюченкова на II международной конференции «Беспилотная авиация — 2015».
«…Работы по перспективным поршневым двигателям
В России в настоящее время полностью отсутствует производство поршневых авиадвигателей для беспилотников и легких самолетов и вертолетов, что заставляет отечественных конструкторов применять авиадвигатели зарубежного производства. В связи с огромной потребностью в таких двигателях, ЦИАМ проводит НИОКР и прорабатывает проекты перспективных поршневых авиадвигателей в интересах их применения на беспилотных летательных аппаратах, легких самолетах и вертолетах».
«…Основные требования к авиадвигателям
Основными критериями при создании перспективных двигателей являлись стоимость эксплуатации, назначенный межремонтный ресурс и топливная эффективность, которые в совокупности определяют расходы на летный час. Проведенные расчеты показали, что для двигателей такого класса стоимость летного часа должна быть не более 500 рублей за час полета (без учета стоимости ГСМ), технический ресурс должен составить не менее 8000 часов. При таких показателях стоимость жизненного цикла составит 3,2 млн. рублей в сегодняшних ценах».
«…Новые технологии создания малоразмерных ГТД
ЦИАМ проводит работы по внедрению новейших технологий для снижения массы, повышения качества отдельных узлов и деталей. Подтверждено снижение себестоимости изготовления колеса компрессора почти в 20 раз против классического колеса с вставными лопатками. За счет применения современных технологий литья цена ротора уменьшена примерно в 15-18 раз по сравнению с ротором стандартной вспомогательной силовой установки такой же размерности, которая стоит на отечественных самолетах. В качестве опытного образца изготовлен и будет испытываться на стенде стартер-генератор с возможностью раскручивания до 90 тысяч оборотов, который ставится на вал без редуктора и существенно уменьшает массу двигателя. Он обеспечивает мощность до 4 кВт и имеет массу всего лишь 700 грамм, против сегодняшних 10 кг».
(по материалам портала aviaport httр://www.аviaport.ru/nеws/2015/05/08/338921.html
Лаборатория интеллектуальной механики «Аудит Аналитик» (АА+)
За этим интригующим названием, скрывается группа энтузиастов, которые разработали, создали, и в данный момент уже испытывают первый опытный образец микро ГТД.
Сергей Журавлев Генеральный директор, вдохновитель и генератор идей Лаборатории со своим детищем в руках.
Вот что говорит про свою команду Сергей Журавлев, Генеральный директор Лаборатория интеллектуальной механики «Аудит Аналитик» (АА+):
Команда разработчиков моделей и прототипов сложных систем (экосистем), и алгоритмов управления ими, как в технической, так и в гуманитарной сферах.
Наши компетенции опираются на собственную концепцию организации научно-конструкторского сообщества, распределённого (сетевого) производства и непрерывного процесса совершенствования линейки высокотехнологичных продуктов в испытательно-монтажном комплексе. Мы не считаем нужным покупать станки и строить завод. В России уже так много избыточных производственных мощностей, и покупок новейшего оборудования, что их надо загружать работой».
Сергей полон оптимизма и здорового реализма, и у него есть для этого все основания.
«Нам выдался редкий шанс войти в мировую элиту производителей малых турбин. Минимизация и локализация, роботизация и автономия – тренды XXI века, в которые пока ещё можно встроиться на равных с лидерами энергообеспечения малого авиастроения, беспилотной авиации, локальной энергетики. В России очень сильные физическая и математическая, материаловедческая и инженерная школы. Их потенциал позволяет в минимальном объёме турбины, достичь максимальных, значений эффективности, в первую очередь эксплуатационной, малыми силами и средствами».
Опытный образец ГТД малой тяги серии МкА
Следует отметить, что разработка газотурбинных установок малой тяги лишь одно из направлений, которым занимается Лаборатория АА+, и этот проект полностью частный, и быть может именно поэтому после всех расчетов, проработок и проб, они имеют на выходе уже готовый опытный образец.
Вот так буднично, на подоконнике, на тетрадке с расчетами и схемами уместился первый опытный ГТД малой тяги марки МкА. Родоначальник серии двигателей разной мощности, которые можно будет применять в различных отраслях.
Двигатель уже проходит испытания на стенде в лаборатории. Вот некоторые его параметры, которые уже четко определены:
Основные данные опытного образца ГТД малой тяги серии МкА (микро авиационный):
Вес – 2060 гр.
Длина – 324.00 мм
Диаметр основной – 115.00 мм
Ширина с пилонами – 128.00 мм
Рабочие характеристики:
Тяга максимальная – 200 N
Тяга рабочая – 160 N
Расход топлива (на макс. тяге) – 460.00 mlmin
Используемое топливо – керосиндизельное топливо
Максимальные скорость вращения – 120 000 обмин
«Разработанный двигатель отличается от изучавшихся нашим КБ аналогов, конструктивом, материалами, характеристиками. А также заранее продуманной интеграцией в ряд изделий».
заместитель директора по инновациям Группы компаний “Беспилотные системы”
В Группе компаний «Беспилотные системы» настолько уверены в перспективности серии двигателей разработки Лаборатории, что начали проектирование перспективного БПЛА специально под них.
Я абсолютно уверен, что через некоторое время, мы увидим, легкие, мощные и экономичные двигатели Лаборатории АА+ не только на легких самолетах, автожирах и вертолетах, но и на большой авиационной технике.
В заключении хотелось бы привести еще одно высказывание Сергея Журавлева:
«Наша команда решилась на разработку маленького газотурбинного двигателя с большими амбициями. Представляя его Вам, мы гордимся тем, что не копировали имеющиеся в мире аналоги, а применяя современные методы анализа и моделирования, новейшие технологии и материалы, создали сложнейшее энергетическое устройство как платформу научно-технических решений с большим потенциалом развития и диапазоном применения.
Россия, как мировой лидер авиационного двигателестроения не может остаться в стороне от революции в сфере применения малых газотурбинных силовых установок. Мы, как можем, способствуем становлению нового рынка, организации исследований и отладке технологий в малых и микро энергетических системах».
Преимущества и недостатки комбинированных агрегатов
В настоящий момент использование комбинированных агрегатов является широко распространенным явлением во всех технологически продвинутых странах. То есть по факту везде, где поля обрабатывает техника, а не животные.
Особенно сильно развита эта практика в США и Западной Европе, где агропредприятия используют в своей работе самые сложные машины, нередко совмещающие в себе сразу весь комплекс почвообрабатывающих органов. В России еще с советских времен используются в основном самые простые агрегаты, которые совмещают не больше 3-4 операций.
Широкое распространение комбинированных агрегатов недвусмысленно говорит нам о том, что такой подход вполне оправдан и в сравнении с традиционными методами обработки почвы несет в себе массу преимуществ. Комбинированные агрегаты среди прочего позволяют:
- минимизировать уплотнение почвы при проходе по ней тракторов и других сельскохозяйственных машин, задействованных в обработке поля;
- снизить расходы топлива и трудозатраты на обработку гектара площади, повысив тем самым энергоэффективность и продуктивность работы агропредприятия;
- сократить сроки проведения полевых работ, что весьма важно, если погода дает лишь небольшое «окно» для выполнения всех технологических операций.
Кроме того, при обработке полей агрегат комбинированный почвообрабатывающий (АКП) значительно замедляет либо даже обращается вспять негативные процессы формирования на полях ям и углублений на границе проходов и другие подобные явления.
Однако следует отметить, что есть и несколько негативных сторон у использования комбинированной техники. В первую очередь это более низкое качество обработки поля в целом. Если дорогая европейская и американская техника практически лишена этого недостатка (а то и вовсе обеспечивает повышенное качество), то недорогие отечественные агрегаты зачастую дают результат заметно (хотя и не радикально) хуже, чем при использовании традиционных отдельных органов обработки.
Другим немаловажным недостатком является дороговизна таких агрегатов. Нередко выгоднее купить простые плуги, бороны и сеялки по отдельности, чем приобретать комбинированный агрегат, совмещающий в себе всё и сразу.
Наконец, комбинированные агрегаты весят значительно больше и создают значительное большее тягловое сопротивление движению, поскольку больше органов погружено в землю одновременно. По этой причине их можно цеплять только к очень мощным и большим тракторам, количество которых у рядового сельхозпредприятия зачастую невелико.
Лучшие модели
Большинство многофункциональных станков изготовлено по единой схеме. Они мало отличаются с точки зрения общего строения, типа привода и прочих деталей. Однако, все они обладают собственными особенностями, прочностью и точностью настройки каждого узла.
Необходимо учитывать, что любой универсальный станок несколько слабее своих специализированных аналогов, так как несущие элементы перегружены дополнительными деталями, а их размеры увеличить нельзя.
Среди образцов продукции разных производителей немало станков, которые выделяются своими рабочими качествами. Рассмотрим их подробнее:
КОРВЕТ 231-31
Комбинированный строгальный станок, обладающий функциями:
- строгание;
- рейсмусование;
- сверление;
- пиление.
На ножевом валу имеется 4 режущих кромки, что позволяет получить чистую поверхность. Скорость вращения вала — 4000 об/мин. Ширина строгания (максимальная) составляет 310 мм, а высота рейсмусования — до 220 мм. Стоимость — 143500 руб.
PROMA ML353G
Продукция чешских инженеров, произведенная в Китае. Модель ML353G относится к профессиональным образцам.
В набор функций входят:
- строгание;
- рейсмусование;
- пиление;
- пазование;
- фрезерование;
- сверление.
Мощность трехфазного двигателя — 4,5 кВт. Ножевой вал оснащен тремя режущими кромками, что облегчает установку и настройку. Ширина строгания — 600 мм, что позволяет обрабатывать мебельные щиты. Цена станка составляет 336753 руб., что доступно не всем желающим. Однако, набор функций и точность обработки достойны такой стоимости.
BELMASH SDM-2500PRO
Компактный станок, удобный для установки в гараже или небольшой мастерской.
В набор функций входят:
- пиление в продольном и поперечном направлении, под углом;
- строгание пласти и кромок, под любым углом;
- фрезерование торцевыми и дисковыми фрезами;
- сверление.
Мощность двигателя 2,5 кВт, а скорость вращения рабочего вала — 2850 об/мин. На шпинделе фрезерного отделения частота 7700 об/мин. Строгальный вал оснащен тремя ножами. Ширина строгания — 28 см (максимум). Цена станка — 54000 руб.
STINKO WOODKRAFT ST-2200
Настольный станок, способный выполнять несколько задач:
- строгание пластей или кромок;
- пиление в продольном или поперечном направлении (под углом);
- сверление.
Двигатель мощностью 2,2 кВт вращает рабочий вал со скоростью 5500 об/мин. Ножевой вал оснащен тремя ножами. Максимальный диаметр сверла — 16 мм. Цена станка — 27000 руб.
Кратон WM-Multi-06P
Станок российского производства, способный выполнять разные операции:
- пиление в разных направлениях;
- строгание пласти или с выборкой четверти;
- рейсмусование;
- фрезерование;
- сверление.
Однофазный двигатель мощностью 2,2 кВт вращается со скоростью 3500 об/мин. Станок может пилить доски толщиной до 60 мм. Глубина рейсмусования может достигать 270 мм. Стоимость станка — 73000 руб.
Hammer MFS900
Компактный станок в настольном исполнении.
Выполняет функции:
- пиление;
- фрезерование;
- полирование;
- заточка режущего инструмента.
Мощность двигателя составляет 0,9 кВт. Скорость вращения рабочего вала — 8500 об/мин. Посадочный диаметр фрез — 20 мм. Допускается пиление досок толщиной до 43 мм. Цена — 12000 руб.
Metabo HC 260 C
Комбинированный станок японского производства, способный выполнять функции:
- строгание;
- рейсмусование;
- сверление.
Мощность двигателя — 2,8 кВт. Частота вращения ножевого вала с двумя режущими кромками — 6500 об/мин. Максимальная толщина стружки — 3 мм. Цена — 79000 руб.
Паровые установки для выработки электро- и тепловой энергии
Исторически под паровой машиной понимали работающий на водяном паре тепловой двигатель поршневого типа, а когда были изобретены паровые турбины, подобные двигатели часто стали называть турбомашинами.
Дешевые виды местного твердого топлива из биомассы (дрова, древесные пеллеты, брикеты, щепа, опилки) используются для генерации электроэнергии или когенерации, для чего разработаны несколько технологий. Основные:
- газификация — получение низкокалорийного горючего (генераторного) газа с его последующим использованием в газопоршневом двигателе, приводящем в действие электрогенератор;
- сжигание твердого топлива в паровом котле и использование полученного пара для работы паровой турбины;
- сжигание твердого топлива в паровом котле и использование пара для работы поршневого парового двигателя (классической паровой машины или парового поршневого двигателя).
Паровой двигатель Spilling
Газовый детандер Spilling
Главным достоинством современных паровых поршневых двигателей (машин) по сравнению с маломощными (особенно одноступенчатыми) паровыми турбинами является меньший удельный расход пара при равных параметрах давления и температуры пара на входе и выходе и при одинаковой мощности паровой машины и паровой турбины. К плюсам классических паровых машин также надо отнести, по сути, постоянный удельный расход пара при изменении нагрузки в широких пределах (в отличие от двигателей внутреннего сгорания — ДВС) при постоянной частоте вращения (работе на синхронный электрогенератор).
А теперь сравним паропоршневые установки (ППУ) с газопоршневыми (ГПУ). Для работы ГПУ в качестве топлива используется не только природный газ, но и с недавнего времени биогаз и генераторный газ, полученный в результате газификации биомассы. При работе классического поршневого двигателя на генераторном газе мощность двигателя падает до 60%. Но если сравнивать с классической паровой машиной, для работы которой используется водяной пар, то, согласно термодинамическому циклу Карно, его экономичность выше за счет того, что температура продуктов сгорания в ГПУ выше температуры пара, ограниченной теплостойкостью материалов парового котла. Однако при работе ГПУ горючий газ высокой температуры необходимо охлаждать перед подачей в цилиндр газопоршневого двигателя, а это приводит к сбросу во внешнюю среду около 20% теплоты сгорания твердого топлива и делает ГПУ неконкурентоспособным классической паровой машине. Принципиальным отличием паропоршневых двигателей от газопоршневых является наличие у первых накопителя энергии — парогенератора (парового котла), который играет роль пароводяного аккумулятора. Большое значение имеет и стабильность рабочего тела (пара). Отсюда следует, что кратковременные остановки котла не приведут к немедленной остановке самой паровой машины. Чего не скажешь о газопоршневом двигателе, в котором при загрузке газогенератора топливом возможно изменение состава газа, а это может привести к остановке двигателя. Существенное преимущество паровых двигателей заключается также в том, что для работы специализированных паровых котлов можно использовать биомассу (щепу или дрова) естественной влажности, а для газогенераторных установок влажность сырья, как правило, не должна превышать 20%. К тому же ГПУ требует более тщательного ухода, в отличие от паропоршневого двигателя. Преимуществами ППУ перед ГПУ и ДВС являются высокая выносливость и долговечность, простота обслуживания и ремонта и возможность работы, по сути, на любом виде дешевого местного твердого топлива. Последнее условие важно, потому что обеспечивает возможность широкого использования топливных ресурсов на местах и независимость от привозного топлива (к примеру, от топлива так называемого северного завоза в России).
Выше мы сравнивали паровые машины с газопоршневыми двигателями, которые работают на газифицированной биомассе. Понятно, что при работе ГПУ на природном газе при генерации только электроэнергии их преимущество неоспоримо. Однако при когенерации расклад не в пользу ГПУ; утилизировать тепловую энергию выхлопных газов значительно сложнее, чем тепловую энергию выхлопа паровой машины, т. к. коэффициент теплоотдачи конденсирующегося пара в теплообменнике в десятки раз выше коэффициента выхлопного газа ГПУ. Паровая машина экологичнее за счет меньшего объема выбросов NO и CO. Работающие паровые двигатели замкнутого цикла менее шумные, чем ГПУ и ДВС. Паровая машина вполне может конкурировать и с паровой турбиной мощностью 1000-2500 л. с. Конечно, по размерам и весу паровые машины больше в сравнении и превосходят паровые турбины, но за счет меньшей частоты вращения вала ППУ нет необходимости устанавливать редуктор. Ведутся и разработки компактных поршневых паровых двигателей. Например, компания из США Cyclone Power Technologies Inc. разработала паропоршневой двигатель со звездообразным расположением цилиндров мощностью 75 кВт, КПД 31,5% — по аналогии с бензиновыми авиационными моторами, которые используются до сих пор на труженике советской и российской авиации — знаменитом биплане Ан-2.
Использование паровых машин
За рубежом в малой энергетике (мини-ТЭС) вместо малых паровых турбин успешно используются паровые машины, или, как сегодня принято говорить, паропоршневые (паровые) моторы или двигатели. Основной отличительный признак паропоршневых моторов от паровых машин — иной тип парораспределения. Паропоршневые моторы предназначены для работы с однократным расширением пара: пар из котла поступает параллельно во все цилиндры, подобно тому как поступает топливно-воздушная смесь в цилиндры ДВС. А в классических паровых машинах пар проходит через все цилиндры последовательно и расширяется многократно.
Мировую известность получили немецкие паровые моторы фирмы Spilling. Это одноступенчатые поршневые паровые машины противодавленческого типа с системой золотникового расширения пара, отличающиеся от других современных паровых машин, которые работают по многоступенчатому принципу. К сожалению, у модельного ряда паровых машин Spilling очень узкий диапазон мощности: от 100 кВт до 1,2 мВт. Но ресурс у них довольно большой, и в последние годы компания-производитель предлагает их на российском рынке для установки на мини-ТЭС, работающих на биотопливе, на производствах, где есть возможность и необходимость редуцирования пара с расходом от 2,5 т/ч и на установках для утилизации отходов (ТБО, ТКО и др.). Компания Spilling поставляет паропоршневой двигатель в сборе с электрогенератором как готовый к работе агрегат с системой управления, автоматизации и программным обеспечением. Такой двигатель может также работать на природном газе либо биогазе в качестве детандера. Стоимость 1 кВт установочной электрической мощности при расчетах можно принять от 1500 евро FCA. Основные технические данные паропоршневых двигателей Spilling: электрическая мощность 100-1200 кВт; частота вращения — 750, 900 и 1000 об/мин; давление пара на входе — 4-60 бар, на выхлопе — 0,2-15 бар; температура насыщения пара — до 480°С. Для многих двигателей Spilling в качестве топлива используют биомассу, в первую очередь древесную. Например, на одном из деревообрабатывающих предприятий в Африке установлен трехцилиндровый одноступенчатый паропоршневой двигатель Spilling электрической мощностью 437 кВт с давлением пара на входе 9 бар и на выхлопе 0,5 бар. Отходящий пар используется для обеспечения работы сушильной камеры. После ввода в эксплуатацию этого двигателя предприятие обеспечило себя дешевой электро- и тепловой энергией и, что особенно важно, обрело независимость от поставок электроэнергии из общей сети.
В числе других европейских производителей паропоршневых двигателей можно назвать чешскую компанию Tenza s. a., которая предлагает паровые двигатели мощностью от 10 до 120 кВт, и шведскую компанию Energiprojekt i Sverige AB, которая производит паровые двигатели мощностью от 500 до 1000 кВт с давлением пара на входе 30-60 бар и с заявленным КПД 25-30% (машины работают по термодинамическому циклу Ренкина с регенерацией и полезным использованием теплоты конденсации пара). Австрийская компания Foerdertechnik GmbH производит когенерационные паровые машины электрической мощностью 150 и 300 кВт и тепловой — 110 и 220 кВт соответственно, в топках паровых котлов которых можно сжигать биомассу, в частности щепу. Максимальная температура пара — 350°С, давление — 32 бар, паропроизводительность 200 кг/ч. Но стоимость этих машин, конечно, очень высокая — 280 тыс. и 480 тыс. евро. При такой стоимости эти «золотые» машины можно использовать только в некоторых европейских странах (Австрии, ФРГ и др.), где реализуются масштабные программы поддержки и субсидий ВИЭ и гарантируется оплата генерируемой электроэнергии по «зеленому» тарифу в течение продолжительного времени (до 20 лет). Поскольку в России о таких тепличных условиях можно только мечтать, то ориентироваться нужно в первую очередь на отечественных и азиатских (КНР, Тайвань, Вьетнам и др.) производителей и разработчиков оборудования. В мире производят сегодня и так называемые паровинтовые машины, которые в большей степени можно отнести к категории турбин, только ротор у этих машин не с лопатками, как у классических турбин, а в виде винта Архимеда — в основном цилиндрической или конусно-винтовой формы.
Первый отечественный паропоршневой мотор был спроектирован в Московском авиационном институте (МАИ) в 1936 году и предназначался для силовой установки экспериментального самолета. Двигатель работал на перегретом паре с давлением 6 МПа и температурой 380°С и на оборотах до 1800 об/мин.
В современной России нужно выделить научную группу «Промтеплоэнергетика» МАИ, которая предлагает довольно оригинальное решение вопроса экономически целесообразного применения паропоршневых машин в малой и децентрализованной энергетике России. Разработчики предлагают создавать паропоршневые двигатели на базе серийно выпускаемых дизельных поршневых двигателей. В конструкции ДВС сохраняется почти весь механизм газораспределения, который в ППУ становится механизмом парораспределения, также сохраняется кривошипно-шатунный механизм. Подобный подход обеспечивает низкую стоимость парового двигателя, в отличие от зарубежных аналогов, благодаря тому, что в производстве используются серийные автомобильные двигатели и запчасти к ним. Кстати, понятие «паропоршневые двигатели» впервые было введено в 2003 году именно научной группой «Промтеплоэнергетика» МАИ.
Где использовать паровые машины эффективно?
В качестве объектов, энергетическую эффективность которых можно повысить при использовании современных паровых машин, могут выступать:
- промышленные и муниципальные котельные с паровыми котлами (паровая машина для привода электрогенератора);
- паросиловые мини-теплоэлектроцентрали (мини-ТЭЦ), где паровую машину целесообразно устанавливать вместо маломощных паровых лопаточных и винтовых турбин, особенно если электрическая мощность последних до 1,2 МВт и они изготовлены в одноступенчатом варианте или же в многоступенчатом, но без промежуточного отбора пара;
- технологические производственные установки на предприятиях, где по условиям реализации основных процессов выпуска продукции есть возможность с помощью парового котла-утилизатора использовать сбросное тепло (например, в металлургии подобными установками могут выступать крупные сталеплавильные печи, а в стекольной промышленности — печи для варки стекла, на цементных, консервных и маслоэкстракционных, ликероводочных заводах и во многих других отраслях промышленности). Использование для этого технологии ORC (органического цикла Ренкина) — более дорогое решение, учитывая и то, что модули ORC в России не производятся.
Технологические решения для мини-ТЭС — конденсационных мини-электростанций (мини-КЭС) и мини-ТЭЦ — с использованием современных паровых машин принципиально схожи с известными, реализуемыми на паротурбинных мини-ТЭС. Это комбинированное производство электрической и тепловой энергии (когенерация на мини-ТЭЦ, в т. ч. создаваемых на базе котельных с паровыми котлами) либо так называемая тригенерация (см. рис. 1), т. е. выработка одновременно трех видов энергии (электрической, тепловой и холодильной). В качестве холодопроизводящего оборудования при тригенерации на паросиловых мини-ТЭС используются абсорбционные холодильные машины, для работы которых вполне достаточно отработавшего в паровом двигателе водяного пара. Такой вариант значительно экономичнее, чем выработка холода с помощью электрических кондиционеров.
В качестве заключения
Паропоршневые мини-ТЭЦ, работающие на биомассе, энергоэффективнее паротурбинных, газопоршневых (при работе на генераторном газе, полученном путем газификации биомассы) и дизельных. В паропоршневых мини-ТЭЦ удельный расход пара на выработку электроэнергии в 1,3-1,5 раза меньше, чем в паротурбинных мини-ТЭЦ, особенно при мощности 1200-1500 кВт. Современные паровые поршневые машины вполне могут использоваться в децентрализованной энергетике России. Применяя местные альтернативные виды топлива, в основном древесную биомассу, можно успешно заменить во многих регионах дизель-генераторы паровыми машинами (паропоршневыми установками) и дополнительно получать тепловую энергию, в результате отказаться от северных завозов угля и дизтоплива. Применение ППУ может способствовать энергосбережению при эксплуатации технологических и энергетических установок, в частности тех, у которых при работе выделяется сбросное тепло в виде выхлопных или дымовых газов.
Сергей ПЕРЕДЕРИЙ, Германия,
s.perederi@eko-pellethandel.de
В статье использованы некоторые материалы научной группы «Промтеплоэнергетика» МАИ и кафедры «Атомная и тепловая энергетика» Санкт-Петербургского политехнического университета им. Петра Великого
Заключение
Мы рассмотрели все типы гибридов и схемы их взаимодействия, но в целом существует множество видов, которые сложно отнести к одной из них, поскольку с течением времени технологии все больше смешиваются и дорабатываются.
На одних используют гидромуфты с редуктором вместо планетарной передачи, на других экспериментируют с задним расположением ДВС или вообще разносят по двум осям ДВС и электродвигатель. Конструкторы не останавливаются на достигнутом и все больше развивают это направление.