0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое капотирование двигателя

Капот NACA

Капо́т NACA (англ. NACA cowling ) — разновидность аэродинамического обтекателя для радиальных авиационных поршневых двигателей, разработанный в США Национальным консультативным комитетом по воздухоплаванию (англ. NACA — НАКА) в 1927 году. Это было большим достижением в решении проблемы снижения аэродинамического сопротивления, что многократно окупило затраты на разработку и внедрение благодаря росту экономии топлива [1] .

Капотирование,
капотаж:

  • — опрокидывание самолета на нос или на спину через нос при движении по земле. Наиболее вероятно при торможении или наезде колёс на препятствие у лёгких самолётов, имеющих шасси с хвостовым колесом;

  • — закрытие крышками, панелями, кожухами и капотами машин, станков, агрегатов или их отсеков, двигателей, механизмов и т. д. Целью капотирования может быть обеспечение безопасности, защита оборудования от влияния внешней среды, обеспечение необходимых аэродинамических характеристик, защита окружающей среды и т. д.
  • На фотографии капотированный мотоцикл.

    Какой пробег до капитального ремонта двигателя

    В среднем до 150-200 тыс. км автомобиль может ходить до капитального ремонта мотора. При этом эта цифра может меняться как в большую, так и меньшую сторону. Многое зависит от качества обслуживания, качества топлива, как машина эксплуатируется, а также от своевременного устранения возникающих неполадок.

    К примеру, одному мотору уже в 90 тыс. км требуется дорогостоящий капремонт, а точно такой же ходит 300 тыс. км и ему лишь необходима поверхностная переборка.

    Однако если цифры пробега доходят до заявленных для капремонта производителем, но двигатель работает нормально без каких-либо неполадок, разбирать мотор не стоит.

    Что входит в капитальный ремонт двигателя

    Капитальный ремонт двигателя состоит из следующих этапов:

    • Полная разборка и очистка ДВС, оценка состояния, проверка и дефектовка всех узлов. В процессе дефектовки определяется степень износа отдельных элементов, проверяют БЦ и ГБЦ на предмет наличия трещин и других дефектов, промеряют цилиндры, измеряют зазоры и т.д. Далее оценивается состояние сопряженных элементов, делаются замеры и сравниваются с допустимыми.
    • Ремонт или замена изношенных деталей.

    Для ГБЦ это фрезеровка, шлифовка плоскости ГБЦ, замена направляющих втулок клапанов, замена и правка седел клапанов, установку новых сальников клапанов (маслосъемных колпачков), восстановление или полную замену распредвала, толкателей и т.д.

    Для ремонта БЦ может потребоваться расточка и хонингование, гильзовка блока цилиндров, устранение трещин на блоке, ремонт постели коленвала и распредвала в случае износа. Также может потребоваться фрезеровка и шлифовка БЦ.

  • Сборка ДВС и тестирование перед установкой на машину.
  • Как отсрочить капитальный ремонт двигателя

    Как долго прослужит двигатель до капремонта зависит от множества факторов.

    В первую очередь это качество моторного масла и своевременная его замена. Не затягивать с заменой воздушных, масляных и топливных фильтров. Желательно придерживаться умеренного стиля езды, избегать постоянных нагрузок. В случае появления посторонних звуков в моторе обязательно обратиться в автосервис.

    Главное – своевременное обслуживание и поддержание всех систем в исправном состоянии.

    Получите бесплатную консультацию и узнайте стоимость ремонта

    В 1920-е годы в авиации широко использовались звездообразные двигатели воздушного охлаждения. Благодаря применению новых материалов и улучшению формы ребристости цилиндров удалось создать стационарные двигатели большой мощности — свыше 500 л. с. В сравнении с двигателями водяного охлаждения они имели меньший удельный вес и более простую конструкцию и были дешевле. Недостатком двигателей воздушного охлаждения было большое аэродинамическое сопротивление из-за выступания в поток плохообтекаемых ребристых цилиндров и рост миделя такого мотора.

    В 1927 году сотрудник Национальной физической лаборатории (англ. National Physical Laboratory, NPL ) Великобритании доктор Хьюберт Тауненд (англ. Hubert Townend ) занимался изучением обтекаемости тел, фюзеляжа-монокока и корпуса дирижабля. Он обнаружил, что при расположении кольцевой поверхности у передней части исследуемого тела суммарное аэродинамическое сопротивление уменьшается. При прохождении через кольцо поток ускорялся, а увеличение скорости обтекания препятствовало преждевременному срыву потока и образованию вихрей. На основе этого исследования он разработал конструкцию обтекателя цилиндров звездообразного двигателя в форме узкого кольца, которое получило название «кольцо Тауненда».

    Одновременно с Таунендом изучением лучшей формы обтекателя для авиационного двигателя воздушного охлаждения занимался американский экспериментатор Фред Вейк (англ. Fred E. Weick ). В результате опытов в аэродинамической трубе в одном из научных центров NACA в 1927 году он нашёл форму капота, которая позволяла почти вдвое уменьшить лобовое сопротивление двигателя. Этот тип капота получил известность как «капот NACA». В отличие от кольца Тауненда он полностью закрывал двигатель.

    Капотирование двигателей воздушного охлаждения позволило уменьшить коэффициент лобового сопротивления силовой установки до величины того же порядка, что и на двигателях с водяным охлаждением. Это и обусловило преимущественное использование звездообразных двигателей воздушного охлаждения в авиации в 1930-е годы.

    Обкатка двигателя после капитального ремонта

    Обкатка двигателя после капремонта напоминает обкатку мотора на новом автомобиле. Новые детали, установленные в мотор, нуждаются в «притирке», когда сглаживаются микроскопические неровности на деталях движка. Хорошо обкатанный двигатель значительно продлевает ресурс мотора после капитального ремонта по сравнению с необкатанным движком.

    Всего существует несколько вариантов обкатки движка.

    1. Холодная обкатка на стенде. Это оптимальный вариант обкатки, позволяющий контролировать все процессы в двигателе авто. При этом варианте все детали и узлы мотора работают в штатном режиме, но сам двигатель не запущен. Для этого автомобильный движок подсоединяется к стенду, в него залиты масло и охлаждающая жидкость. Привод обеспечивается электромотором, который через карданный вал подсоединен к коленчатому валу автомобильного движка. Всем процессом руководит компьютерная программа, задающая количество оборотов, опираясь на показания датчиков.
    2. Горячая обкатка на стенде также проводится специалистами СТО. Проводится в двух режимах: без нагрузки и с нагрузкой. При горячей обкатке автомобильный двигатель запускается. В первом режиме мотор сначала обкатывается на пониженных оборотах, начиная от 1000 Об/мин. Постепенно частота оборотов повышается, последний этап проводится при максимально возможных оборотах движка. На втором этапе проводится обкатка с нагрузкой, нагружателем выступает электромотор стенда. Двигатель нагружается при полной подаче топлива. Частота оборотов при начале обкатки под нагрузкой — 1200 Об/мин, затем количество оборотов увеличивается.
    3. Естественная обкатка двигателя. В этом варианте автовладелец самостоятельно обкатывает движок в процессе эксплуатации автомобиля.

    При самостоятельной обкатке необходимо тщательно подходить к рекомендациям специалистов и ни в коем случае не давать полную нагрузку мотору. Первый пуск двигателя после капитального ремонта — самый ответственный момент при естественной обкатке. В двигатель заливается новое моторное масло до верхней планки щупа.

    1. Перед запуском необходимо полностью зарядить АКБ, чтобы она смогла осуществить первый поворот коленвала.
    2. На карбюраторных автомобилях необходимо подкачать топливо вручную.
    3. После запуска мотора необходимо контролировать уровень масле в движке. Если лампочка низкого давления масла не погасла через несколько секунд, то нужно срочно заглушить мотор.
    4. Движок прогревается до уровня около 90 °C. В процессе нагрева нужно опять же контролировать давление масла, его уровень должен составлять от 0,4 до 0,8 кг/см 2 . После нагрева до указанных величин необходимо заглушить мотор. Как только двигатель остынет до температуры в 30–40 °C, мотор снова запускается. Всего таких циклов необходимо совершить 1–2 десятка.
    5. Далее мотор обкатывается на более высоких оборотах — 1000 Об/мин, 1500 Об/мин и 2000 Об/мин. В каждом режиме мотор обкатывается 3–5 минут.
    6. В дальнейшем можно осторожно начинать движение. Первые 2–3 тыс. км максимальная скорость автомобиля не должна превышать 60 –70 км/ч, после достижения этого рубежа нужно пройти ТО, где следует заменить моторное масло, так как в нем накапливаются продукты износа. Также регулируются зазоры клапанов, обороты холостого хода и натяжение цепи ГРМ. После ТО «максималку» можно увеличить до 90 км/ч.

    Окончательная притирка деталей и узлов мотора происходит на отметке в 10 тыс. км пробега после капитального ремонта. После этого движок готов к полным рекомендованным нагрузкам.

    • 1
    • 2
    • 3
    • 4
    • » .
    • 27

    Авиация и космонавтика 1998 01

    На пути к истребителю пятого поколения

    В конце сентября 1997 года в истории отечественной авиации произошло историческое событие — состоялся полет нового экспериментального самолета, С-37 ‘Беркут’, который может стать прототипом отечественного истребителя пятого поколения. Хищная черная птица с белым носом, оторвавшись от бетона взлетно-посадочной полосы аэродрома в Жуковском, быстро исчезла в сером подмосковном небе, возвестив громом своих турбин о начале нового этапа в биографии российской истребительной авиации.

    Исследования облика истребителя пятого поколения начались в нашей стране, как и в США, в середине 1970-х годов, когда машины четвертого поколения — Су-27 и МиГ-29 — делали лишь свои ‘первые шаги’. Новые самолеты должны были иметь значительно более высокий боевой потенциал, чем их предшественники. К работе были привлечены ведущие отраслевые научные центры и ОКБ. Совместно с заказчиком постепенно были сформулированы основные положения концепции нового истребителя — многофункциональность, т.е. высокая эффективность при поражении воздушных, наземных, надводных и подводных целей, наличие круговой информационной системы, освоение крейсерских режимов полета на сверхзвуковых скоростях. Предусматривалось и достижение кардинального уменьшения заметности самолета в радиолокационном и инфракрасном диапазонах в сочетании с переходом бортовых датчиков на пассивные методы получения информации, а также на режимы повышенной скрытности. Предполагалась интеграция всех имеющихся информационных средств и создание бортовых экспертных систем.

    Самолет пятого поколения должен был обладать способностью осуществлять всеракурсный обстрел целей в ближнем воздушном бою, а также вести многоканальную ракетную стрельбу при ведении боя на большой дальности.

    Предусматривалась автоматизация управления бортовыми информационными и помеховыми системами; повышенная боевая автономность за счет уставновки в кабине одноместного самолета индикатора тактической обстановки с возможностью микширования информации (т.е. одновременного вывода и взаимного наложения в едином масштабе ‘картинок’ от различных датчиков), а также использования систем телекодового обмена информацией с внешними источниками.

    Аэродинамика и бортовые системы истребителя пятого поколения должны были обеспечивать возможность изменения угловой ориентации и траектории движения самолета без сколько-нибудь ощутимых запаздываний, не требуя при этом строгой координации и согласования движений управляющих органов. От самолета требовалось ‘прощать’ грубые погрешности пилотирования в широком диапазоне условий полета.

    Перспективный самолет планировалось оснастить автоматизированной системой управления на уровне решения тактических задач, имеющей экспертный режим ‘в помощь летчику’.

    Одним из важнейших требований к российскому истребителю пятого поколения являлась ‘сверхманевренность’ — способность сохранять устойчивость и управляемость на углах атаки 90° и более. Следует заметить, что ‘сверхманевренность’ первоначально фигурировала и в требованиях к американскому истребителю пятого поколения, создававшемуся, практически одновременно с российской машиной, по программе ATF. Однако в дальнейшем американцы, столкнувшись с трудноразрешимой задачей совместить в одном самолете малую заметность, сверхзвуковую крейсерскую скорость и ‘сверхманевренность’, вынуждены были пожертвовать последней (маневренные возможности американского истребителя ATF/F- 22, вероятно, лишь приближаются к уровню, достигнутому на модернизированном самолете Су-27, оснащенном системой управления вектором тяги).

    С-37 ‘Беркут’ в полете

    Отказ ВВС США от достижения сверхманевренности мотивировался, в частности, быстрым совершенствованием авиационного вооружения: появление высокоманевренных всеракурсных ракет, нашлемных систем целеуказания и новых головок самонаведения позволяло отказаться от обязательного захода в заднюю полусферу противника. Предполагалось, что воздушный бой теперь будет вестись на средних дальностях с переходом в маневренную стадию лишь в крайнем случае, ‘если что-то сделано не так’. Однако в истории военной авиации уже не раз отказывались от ближнего маневренного воздушного боя, но впоследствии теоретические выкладки опровергались жизнью — во всех вооруженных конфликтах (за исключением, разве что, бутафорской ‘Бури в пустыне’) истребители, вступавшие в бой на больших дальностях, как правило, переводили его на меньшие дистанции и часто завершали меткой пушечной очередью, а не ракетным пуском. Вполне прогнозируется ситуация, когда совершенствование средств РЭБ, а также уменьшение радиолокационной и тепловой заметности истребителей приведет к падению относительной эффективности ракет большой и средней дальности. Кроме того, даже при ведении дальнего ракетного боя с использованием обеими сторонами оружия примерно равных возможностей, преимуществом будет обладать тот прототивник, который сумеет быстрее сориентировать свой истребитель в направлении цели, что позволит полнее использовать динамические возможности своих ракет. В этих условиях особое значение приобретает достижение максимально высоких угловых скоростей неустановившегося разворота как на дозвуковой, так и на сверхзвуковой скорости. Поэтому требование сверхманевренности для российского истребителя пятого поколения, несмотря на всю сложность проблемы, осталось неизменным.

    В качестве одного из решений, обеспечивающих получение требуемых маневренных характеристик, рассматривалось применение крыла обратной стреловидности (КОС). Такое крыло, обеспечивающее определенные компоновочные преимущества по сравнению с крылом прямой стреловидности, пытались использовать в военной авиации еще в 1940-е годы. Первым реактивным самолетом с крылом обратной стреловидности стал германский бомбардировщик Юнкере Ju 287. Машина, совершившая первый полет в феврале 1944 года, была расчитана на максимальную скорость 815 км/ч. В дальнейшем два опытных бомбардировщика этого типа достались СССР в качестве трофеев.

    В первые послевоенные годы в нашей стране велись и собственные исследования КОС применительно к скоростным маневренным самолетам. В 1945 году по заданию ЛИИ конструктором П.П.Цыбиным было начато проектирование экспериментальных планеров, предназначенных для отработки аэродинамики перспективных истребителей. Планер набирал высоту, буксируемый самолетом, а для разгона до околозвуковых скоростей пикировал, включая при этом пороховой ускоритель. Один из планеров, ЛЛ-3, вышедший на испытания в 1947 году, имел крыло обратной стреловидности и достигал скорости 1150 км/ч (М=0,95).

    Однако в то время реализовать преимущества такого крыла не удалось, т.к. КОС оказалось особо подвержено аэродинамической дивиргенции -потере статической устойчивости при достижении определенных значений скорости и углов атаки. Конструкционные материалы и технолгии того врмени не позволяли создать крыло обратной стреловидности, имеющее достаточную жесткость. К обратной стреловидности создатели боевых самолетов вернулись лишь в середине 1970-х, когда в СССР и США приступили к работам по изучения облика истребителя пятого поколения. Применение КОС позволяло

    Применение

    Капот NACA играл большую роль, чем просто устройство направления потока воздуха. При его установке улучшалось охлаждение двигателя, росла скорость полёта за счёт снижения сопротивления и использование тепла двигателя для создания тяги. Обтекатель имел осесимметричный аэродинамический профиль, в отличие от линейного профиля крыла.

    После сотен опытов в технической записке NACA Ф. Вейк в ноябре 1928 года опубликовал [2] убедительные результаты. Тогда же Лаборатория аэронавтики имени Лэнгли приобрела истребитель-биплан Curtiss Hawk AT-5A и оборудовала его капотом вокруг радиального двигателя. Результаты были впечатляющими. Несмотря на рост веса, максимальная скорость самолёта подскочила со 190 до 220 км/ч, то есть на 16 % [3] .

    Преимущества капота NACA получили всеобщее признание в следующем году, когда Фрэнк Хоукс (англ. Frank Hawks ), известный лётчик-трюкач и воздушный гонщик после оснащения капотом NACA моноплана Lockheed Air Express компании Lockheed Corporation установил новый рекорд беспосадочного перелёта между Лос-Анджелесом и Нью-Йорком со временем 18 часов 13 минут. Капот обеспечил рост скорости самолёта с 250 до 285 км/ч. После завершения полёта компания Lockheed направила в комитет NACA телеграмму со следующим текстом: «Рекорд был бы невозможен без нового капота. Все заслуги принадлежат NACA за их кропотливые и точные исследования» [4] . Использование капота NACA оценивается экономическим эффектом в 5 миллионов долларов, что превышало суммарные ассигнования NACA от его создания и до 1928 года.

    Капот NACA направляет поток холодного воздуха через самые горячие точки двигателя (цилиндры и головки цилиндров). Кроме того, турбулентность потока после прохождения зоны цилиндров существенно снижалась. Суммарно все эти эффекты снижали аэродинамическое сопротивление двигателя почти на 60 %. Такие выводы были сделаны на основе различных типов радиально-поршневых двигателей, которые оснащались капотами, начиная с 1932 года [5] .

    При попытке использования капота на многомоторных самолётах конструкторы выяснили, что такая мера практически не влияет на аэродинамические показатели машины. Проведённые опыты в аэродинамических трубах показали, что капотирование даёт положительный эффект только когда двигатель расположен на носу фюзеляжа или на передней кромке крыла. К середине 1930-х годов капоты NACA стали обязательной частью конструкции военных и пассажирских самолётов с двигателями воздушного охлаждения. Благодаря этому скорость полёта в среднем выросла на 6. 10 %

    голоса
    Рейтинг статьи
    Читать еще:  Электропроводка газель 405 двигатель инжектор схема
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector