4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое калоризаторный двигатель

Нефтяной двигатель

Из Википедии, бесплатной энциклопедии

Нефтяной двигатель (также керосиновый двигатель, двигатель с калильной головкой, калоризаторный двигатель [1] , полудизель [2] ) — двигатель внутреннего сгорания, воспламенение топлива в котором происходит в специальной калильной головке — калоризаторе [3] . Двигатель может работать на различных видах топлива: керосине, лигроине, дизельном топливе, сырой нефти, растительном масле [4] и т. д.

Первый поршневой двигатель


Макет самоходной тележки и схема ДВС Исаака Де Риваза
К концу 18-го века в мире уже существовали паромобили. Экипажи с паровым двигателем конструировали в Англии и Франции. Однако эти машины были громоздкими и медлительными. Кроме того, создатель самых совершенных на тот момент паровых двигателей Джейм Уатт считал, что для создания быстрых паромобилей потребуется паровой двигатель с высоким давлением в котле, что попросту не безопасно.

Понимал это и французский инженер и по совместительству действующий артиллерийский офицер — Франсуа Исаак де Риваз. Хорошо знакомый с принципом работы пороховой пушки, он задумался, а почему бы для приведения в движение поршня, использовать энергию пороховых газов, а не пара. В 1804 году он построил первый экспериментальный стационарный двигатель. Он работал по следующему принципу: в цилиндр подавалась смесь водорода с воздухом и воспламенялась при помощи электрического разряда. Фактически Риваз создал первый поршневой двигатель внутреннего сгорания.

В 1807 году изобретатель собрал первый экипаж с мотором собственной конструкции. На четырехколесной базе находился однопоршневой ДВС, без механизма газораспределения, а подача топливной смеси контролировалась вручную. Такой вот примитивный автомобиль смог преодолеть лишь 100 метров. Через шесть лет Риваз собрал новый экипаж куда больших размеров. Он имел длину 6 м, диаметр колес 2 м и весил около тонны. На этот раз мотор работал на смеси из светильного газа и воздуха. Груженая камнями машина смогла преодолеть 26 метров со скоростью 3 км/ч. За один рабочий ход поршня, автомобиль передвигался на 4-6 метров. Конечно с такими характеристиками коммерческая эксплуатация такого ДВС была невозможна, но это было только начало.

Устройство и принцип действия

Нефтяной двигатель может быть как двухтактным, так и четырёхтактным, но большинство из них были двухтактными с картерной продувкой, что упрощало конструкцию. Основной особенностью данного типа двигателей является калильная головка (калоризатор), закрытая теплоизоляционным кожухом. Перед запуском двигателя калоризатор должен быть нагрет до высокой температуры — например, при помощи паяльной лампы или установленной на двигателе корзинке с раскалёнными древесными углями [7] . Впоследствии вместо горелки для прогрева калильной головки стала использоваться электрическая спираль.

При работе двигателя в ходе такта впуска в калильную головку через форсунку подаётся топливо (обычно в момент прохождения поршнем нижней мёртвой точки), где сразу же испаряется, однако не воспламеняется, так как калильная головка в момент срабатывания форсунки заполнена отработавшими газами и в ней недостаточно кислорода для поддержания горения топлива. Лишь незадолго до того, как поршень придёт в верхнюю мёртвую точку, в головку из цилиндра поступает богатый кислородом сжатый поршнем свежий воздух, в результате чего пары топлива воспламеняются.

Степень сжатия у подобных двигателей гораздо ниже, чем у дизельных — не более 8. К тому же топливо, в отличие от дизельного двигателя, поступает не в конце такта сжатия, а во время впуска [8] , что позволяет применять топливный насос более простой конструкции, рассчитанный на сравнительно небольшое давление (обычно не более 30…40 атм).

Читать еще:  Что такое двигатель вагнера

Момент воспламенения топлива зависит от температуры калильной головки, которая в процессе работы может изменяться. Для управления опережением воспламенения мог использоваться впрыск воды.

Принцип работы роторного двигателя

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!


Роторный двигатель в разрезе


Ротор роторного двигателя


Камера роторного двигателя

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень. Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси. На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа. В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.


Выходной вал роторного двигателя

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Как самостоятельно полировать автомобиль?

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Читать еще:  Что такое аксиальный двигатель

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Устройства плавного пуска УБПВД-ВЦ

Главная Продукция и услуги Устройства плавного пуска УБПВД-ВЦ

Пример системы безударного пуска на базе УБПВД-ВЦ.

Система безударного пуска 4-х электродвигателей механизмов с «вентиляторной» характеристикой нагрузки состоит из штатных рабочих выключателей Q1…Q4, головных выключателей QF1 и QF2, а также пусковых вакуумных выключателей в шкафах ШКА1 и ШКА2.

Пуск электродвигателя производится под управлением контроллера, расположенного в шкафу ШК в следующей последовательности. При наличии на входе контроллера сигнала готовности агрегата к пуску командой ПУСК с пульта управления (ПУ) инициализируется программа автоматического пуска. Контроллер включает пусковой выключатель QS, соответствующий запускаемому электродвигателю, а затем головной выключатель QF, подключающий устройство УБПВД к той секции шин, к которой после разгона будет подключен запускаемый двигатель. На тиристоры устройства УБПВД подается напряжение, и в запертом состоянии производится их тестирование. При положительном результате теста контроллер разрешает подачу отпирающих импульсов на тиристоры. Угол отпирания тиристоров плавно уменьшается, и на статорных обмотках двигателя начинают расти напряжение и ток.

Ток плавно нарастает до тока трогания (1,3…1,6) номинального тока двигателя, и электродвигатель начинает разгоняться. Если в процессе разгона нагрузка со стороны агрегата увеличивается, то контроллер плавно поднимает ток по линейному закону к концу разгона до величины 2…2,5 номинального. По окончании разгона контроллер включает рабочий выключатель и подключает двигатель на полное напряжение сети. При пуске синхронного электродвигателя подается возбуждение, после чего двигатель втягивается в синхронизм. Затем запираются тиристоры, отключаются головной выключатель QF и пусковой выключатель QS. Система готова к следующему пуску.

Устройство допускает 3 пуска подряд из холодного состояния. Каждый последующий пуск через 10 минут. Устройство УБПВД не только исключает негативные пусковые воздействия на электродвигатель и механизм, но и облегчает работу коммутирующей аппаратуры:

  • Включение и отключение пусковых и головных выключателей происходит в бестоковом режиме.
  • Рабочий выключатель Q после разгона электродвигателя включает вместо 6-8-кратного пускового тока установившийся ток на номинальной (подсинхронной) скорости двигателя.


Структура условного обозначения

Схема плавного пуска электродвигателей УБПВД-ВЦ тиристорным регулятором напряжения

Однолинейная схема плавного пуска электродвигателей УБПВД-ВЦ

ВТБ – высоковольтные тиристорные блоки
QSл – линейный разъединитель
QSш – шинный разъединитель
ОПН – ограничитель напряжений
ТТ – трансформатор тока

Технические характеристики устройств серии УБПВД-ВЦ

(8352) 39-00-10, 39-00-12

Каталог «Преобразовательная техника» 2.9 Mb

Система форкамерно-факельного зажигания

Наличие форкамеры означает, что рабочая камера сгорания в таком двигателе разделена на составные части: предкамеру и основную камеру. Давайте рассмотрим принцип работы системы на примере карбюраторной модели ГАЗ «Волга» с предкамерным ДВС.

В предкамеру смесь поступает по специальному каналу, который выполнен во впускном коллекторе и ГБЦ. Смесь в форкамеру подается переобогащенной, для чего в карбюраторе присутствует отдельная секция. Предкамера также имеет отдельный впускной клапан. Далее происходит поджиг указанной смеси при помощи искры от свечи зажигания. В этот момент открывается впускной клапан основной камеры сгорания, который приводится в действие распредвалом ГРМ. В основную камеру поступает топливно-воздушная смесь. Порция этой смеси обедненная.

Предкамера соединяется с основной камерой специальными сопловыми каналами, через которые в основную камеру прорывается пламя, газы и пары горючего из форкамеры. От контакта с ними обедненная смесь в основной камере также воспламеняется. Получается, форкамера представляет собой своеобразный механический «подвпрыск», отдаленно напоминая принцип двухступенчатой работы современных дизельных инжекторных форсунок.

На земле, в воде и в небесах

В конце 1889 года семью Готтлиба Даймлера потрясла трагедия. Умерла его жена Эмма, что серьезно повлияло и на здоровье конструктора.

Между тем, компанию ждали большие перемены. Завод получил финансовые вливания и трансформировался в корпорацию Daimler Motoren Gesellshaft или DMG. Техническим директором компании стал Даймлер, а главным конструктором — Майбах.

Эмблемой компании была выбрана трехлучевая звезда, заключенная в круг. Эта эмблема сейчас принадлежит марке Mercedes-Benz. Она означала, что компания изготавливает двигатели для трех стихий: для земли, воды и для небес.

Вскоре моторостроительная корпорация стала получать военные заказы и вместе с инвестициями к управлению заводом пришли совсем иные люди.

Набирающей мощь Германии требовались моторы для дирижаблей и для военно-морского флота, а убежденность Готлиба Дайлера в перспективности автомобильной техники только раздражала совет директоров. В итоге, вместе с разработкой новых моторов, новые управленцы стали выдавливать прежних руководителей. Уже через год после реорганизации предприятия Совет директоров вынудил покинуть свой пост главного инженера Вельгельма Майбаха, а Готлиб Даймлер фактически потерял контроль над своим заводом. Измотанный смертью жены и трудностями на службе, он в 1992 году слег с инфарктом и оставил компанию новым директорам.

Между тем дело великих конструкторов жило. Бензиновые моторы действительно завоевывали пространства и поднимались в небеса. Последующая борьба акционеров и споры о путях развития не сломили прогрессивного духа. Со временем Daimler Motoren Gesellshaft (DMG) превратилась в крупную военно-промышленную корпорацию. Смерть Готлиба Даймлера от сердечного приступа в 1900 году не позволила ему стать свидетелем, одновременно триумфа и трагедии его детища. Моторы DMG воевали на полях сражений Первой мировой и стали основой авиации Германии.

До сих пор корпорация Daimler является ключевой компанией в Германии и в Европе. Производство автомобилей Mercedes-Banz и «Daimler Trucks» лишь малая ее часть.

В настоящее время Daimler AG владеет долями в следующих компаниях: Mitsubishi Fuso Truck and Bus Corporation (85,0 % акций), Automotive Fuel Cell Cooperation (50,1 %). Daimler AG также является крупнейшим владельцем и поставщиком Airbus Group.

По прежнему трехлучевая звезда Готлиба Даймлера господствует в трех средах: на земле, воде и в воздухе.​

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector