2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое гибридный шаговый двигатель

Шаговые электродвигатели являются двигателями переводящими электричество в механическое движение. Главным отличием его от других электромоторов в методе действия. Благодаря этому методу вал вращается. Моторы с шагом созданы для прерывистого вращения, этим они отличаются от других. Их вращение состоит из шагов, от этого получилось название.

Шаг является частью оборота вала мотора . Размер шага зависит от механической части двигателя и от метода управления. Шаговые двигатели подключаются к различным типам питания. В отличие от своих собратьев, шаговый мотор имеет управление импульсами, преобразующимися в градусы, а затем во вращение. Например, 2,2 0 шаговый мотор вращает вал на 2,2 0 при каждом поданном импульсе. Эта характеристика дает повод называть их цифровыми.

Метод действия

Обмотки в количестве 4-х штук стоят по кругу равномерно между собой на статоре. В зависимости от того, как подключены эти обмотки будет определяться тип шагового двигателя. В нашем случае обмотки разделены, мотор с шагом, углом поворота в 90 градусов. Обмотки подключены по кругу. Порядок подключения направление вращения двигателя с шагом. На рисунке видно, что вал вращается на 90 градусов в то время, как ток поступит в катушку, через 1 секунду.Стандартными составляющими шаговых двигателей являются ротор и статор. Ротор включает в себя сердечники, изготовленные из магнитов. Схематически дано изображение.

Режимы управления

При разной подаче тока на катушки вал двигателя вращается по-разному.

Волновое управление

Метод практически нами рассмотрен, волновое действие на катушку. Ток идет через одну катушку. Такой метод редко применяется, характерен пониженным потреблением энергии, дает возможность получения меньше 50% момента вращения двигателя. Большую нагрузку при таком управлении шаговые электродвигатели не выдержат. На один оборот вала приходится четыре шага.

Управление полным шагом

Широко применяемый метод — полношаговый. По этому способу напряжение питания на катушки подается попарно. От того, как подключены обмотки, двигателю необходим двойной ток. Электродвигатель при такой схеме выдаст 100% момента вращения по номиналу.

Полный оборот двигателя соответствует четырем шагам, число шагов по номинальному значению.

Режим полушага

Это оригинальный метод получения двойной точности позиционирования, не изменяя конструкцию двигателя. Чтобы работать по этому способу, подключают одновременно все имеющиеся пары. Ротор поворачивается на 0,5 шага. Такой способ имеет место при применении двух или одной катушки.

Режим с 1 обмоткой Режим с 2 обмотками

По этому способу один и тот же мотор может выдать шагов в 2 раза больше на один оборот. Это значит, что система позиционирования работает с двойной точностью. Наш мотор выдает восемь шагов на один оборот.

Микрошаговый режим

Смысл микрошага заключается в подаче на катушки двигателя напряжения питания сигнала определенной формы, похожей на синус, а не импульсов. При таком методе изменения положения дает возможность получения плавного перемещения.

Благодаря микрошаговому режиму шаговые электродвигатели широко применяются в позиционировании, в программно управляемых станках. Рывки деталей, работающих с двигателем, толчки самого механизма понижаются. В микрошаговом режиме двигатель вращается плавно, как моторы постоянного тока.

Конфигурация графика тока, проходящего по обмотке, сходна с синусоидой. В эксплуатации применяются цифровые сигналы. Их примеры показаны на рисунках.

Способ микрошага — подключение питания двигателя, не управления катушками.

Отсюда следует, что микрошаг применяется при волновом типе.

В микрошаговом типе шаги не увеличиваются, хотя визуально это представляется. Для увеличения точности механизма применяют шестерни с трапецеидальными зубьями, чтобы обеспечить плавный ход.

Типы моторов
Шаговые электродвигатели с постоянным магнитом

Ротор оборудован постоянным дисковым магнитом с несколькими полюсами. Действует по такому же принципу, как микрошаговый мотор. Катушки статора отталкивают и притягивают магнит, расположенный на роторе, образуя момент вращения.

Размер шага с постоянным магнитом находится в интервале от 45 до 90 градусов.

Шаговые электродвигатели с сопротивлением переменной величины

Ротор не имеет постоянных магнитов. Вместо них сердечник ротора производится из металла, похожего на диск с зубьями, или на шестерню. На статоре расположены обмотки в количестве более 4-х штук. Катушки подключаются в парах друг к другу.

Крутящий момент уменьшается, так как постоянные магниты отсутствуют. Однако, имеется положительная сторона — у шаговых моторов отсутствует момент стопорения. Стопорящий момент вращения создан постоянными магнитами, притягивающимися к корпусу статора при отключенном питании в катушках.

Можно просто определить, какой момент, если попробовать повернуть отсоединенный мотор. Сразу будут понятны ощутимые щелчки в двигателе при каждом шаге. Эти ощущения и будут являться моментом фиксации. Момент притягивает к себе магниты корпуса. На рисунке изображено действие мотора.

Шаг равен интервалу от 5 до 15 градусов.
Шаговый мотор гибридного типа

Шаговые электродвигатели называются «гибридными», потому что включают в себя разные типы характеристик. Они имеют хорошие моменты, малый размер шага, находящийся в интервале от 0,9 до 5 градусов. При этом он обеспечивает высокую точность.

Механическая конструкция вращается со значительными скоростями. Такие виды моторов применяются в станках с программным управлением, в роботах. Недостатком является высокая цена. Обыкновенный двигатель вместе с восьмью катушками.

Из-за невозможности изготовления магнита, нашли оригинальное решение. Взяли два диска с зубьями 50 штук, постоянный магнит. Приварили диски к полюсам. Получилось, что два диска имеют соответственно каждый полюс.

Оригинальность конструкции в том, что диски размещены так, что, смотря на них сверху, они похожи на один диск со 100 зубьями. Вершина зуба на одном диске совпадает со впадиной. На рисунке изображено действие гибридного мотора 75 шагов на один оборот. Шесть обмоток сделаны парами, которые имеют катушку на противоположных краях. Первая пара – это пара вверху и внизу обмотки, тогда 2-я пара смещена на угол 60+5 градусов от первой, а 3-я смещена на 65 градусов от второй.

Разница углов позволяет вращаться валу двигателя. Управляющие режимы применяются, как волновые для экономии электроэнергии.

Когда катушка задействована, имеется три положительных полюса в 5 градусов сзади, они притягиваются в сторону вращения, и три отрицательных полюса в 5 градусов впереди, толкают ротор в сторону вращения вала. Рабочая обмотка всегда расположена между отрицательным и положительным полюсами.

Схема подключения обмоток

Шаговые моторы принадлежат к моторам с несколькими фазами. Чем больше фаз, тем работа двигателя мягче, но и выше стоимость. Момент вращения не зависит от числа фаз. Большое применение получили двигатели с 2-мя фазами. Двигатели подключают тремя типами схем для 2-фазных шаговых моторов. Катушки соединены друг с другом, применено разное количество проводов для соединения двигателя с контроллером.

Читать еще:  Чем отличаются двигатели 4afe
Биполярный двигатель

Это самая простая конструкция, применяется четыре провода для соединения мотора с контроллером. Катушки подключены параллельно или последовательно.

Параллельное или последовательное подключение

Двигатель имеет 4 контакта. Два желтых экрана подключают вертикальную катушку, два розовых – горизонтальную. Проблема в изменении полярности, можно изменить направление тока, драйвер станет сложнее.

Униполярный двигатель

Применяя общий провод, изменяют полюса магнитов. Если соединить общий провод с землей, один и другой вывод катушки к питанию, то полюса изменятся. Схема соединения двигателя биполярного типа простая для понимания, она обычно состоит из 2-х транзисторов на одну фазу.

Подключение с общим проводом

Недостаток – применение половины катушек, как при волновой управляемости электромотором. Момент вращения получается равным половине возможного значения. Униполярные электромоторы необходимо изготавливать по двойным размерам, для обеспечения сопоставимого момента. 1-полярный электромотор имеет возможность применяться в качестве биполярного мотора. Для этой цели необходимо провод отключить.

Униполярные шаговые электродвигатели имеют несколько вариантов подключения.

Общий провод соединен внутри

Шаговый мотор с 8-ю выводами
Это мотор с гибким подключением, обмотки оснащены выводами с обеих сторон. Можно подключать двигатель по любому методу:
  • Униполярный с 5 или 6 выводами.
  • Биполярный с последовательной схемой.
  • С параллельной схемой.
  • С малым током.

Подключение 4 обмоток

Шаговые электродвигатели Лавета

Моторы Лавета используются в электрических часах. Их конструкция сделана для эксплуатации с одним фазовым сигналом. Моторы Лавета обладают возможностью делать их конструкцию миниатюрной, применяются для исполнительной части часов ручного ношения. Этот тип моторов изобрел инженер Мариус Лавет . По его имени назвали тип шаговых двигателей.

Лавет – выпускник школы электрики изобрел двигатель, который дал ему известность во всем мире. Вид статора похож на статор электромотора с расщепленными полюсами. Имеется одна обмотка, полюса созданы витками с одним проводом из медной жилы толстого сечения, расположены на магнитном проводе, образуют необходимую фазу. Токи индукции образуют необходимый момент вращения.

Магнитное поле распространяется с задержкой, применяется для сдвига фаз, на прямой угол 90 градусов, чтобы имитировать напряжение из двух фаз. Конструкция ротора создана в виде постоянного магнита. Конструкции такого типа имеют широкую сферу применения в технике для быта (миксерах, блендерах). Моторы Лавета отличаются тем, что из-за зубцов вал стопорится с определенным шагом. Результатом этого возможно движение стрелки секунд. Разновидность двигателя Лавета не предназначена для реверсивной работы, как и большинство шаговых моторов.

Тезисы:

• Правильное управление током двигателя (с пом. управления ориентацией поля) в шаговых приводах с обратной связью могут устранить проблемы среднечастотного резонанса, увеличить момент и снизить шум от двигателя

• Качественные шаговые гибридные сервоприводы не уступают сервоприводам на базе вентильных электродвигателей на низких скоростях вращения.

Шаговые двигатели


Шаговые двигатели
— прекрасно известный способ превратить электрическую энергию в точные -механические перемещения. Каждый импульс, посылаемый на драйвер двигателя, двигает ротор в точном соответствии с заданными на драйвере настройками. Например, 100 посланных импульсов на полношаговый привод с двигателем с шагом 1.8° будут преобразованы в поворот ровно на 180°. Одной из сильных сторон шаговых двигателей является то, что они способны работать без обратной связи, без коррекции положения с помощью энкодеров или иных датчиков, т.к. вал по самой архитектуре шагового двигателя совершает перемещения строго в соответствии с поданными импульсами. Однако, это прекрасно работает лишь в том случае, если шаговые двигатели никогда не перегружаются и не впадают в резонанс. В реальности же в очень редких случаях когда отсутствуют эти два фактора. Для того, чтобы быть уверенным, что шаговый мотор не будет пропускать шаги, большинство разработчиков поступают просто — закладывают большой запас при выборе мощности двигателя. Это означает, что на станок будет установлена значительно более тяжелая и дорогая модель, чем это действительно требуется. Резонанс же часто проявляется на тех же самых, рабочих частотах вращения, которые являются основными в конкретном приложении, и поэтому избежать его становится еще сложней.

Как одно из средств избежать последствий кратковременных перегрузок шагового двигателя и пропуска шагов — это установить энкодер на двигатель мотора, точь-в-точь как ставится аналогичный датчик на вал вентильного серводвигателя. Энкодер представляет информацию о положении ротора контроллеру, который сравнивает её с заданной координатой, и использует полученное рассогласование для выполнения шагов таким образом, чтобы скомпенсировать разницу. К сожалению, данный способ не помогает устранить последствия резонанса. Однако, возможность такая все же есть, и заключается она в комбинации коррекции по положению(т.е. компенсации числа импульсов STEP) и одновременного управления ориентацией поля статора шагового двигателя, по принципу аналогичному векторному управлению трехфазными электродвигателями. Поскольку энкодер дает сведения о положении вала, существует возможность ориентировать магнитное поле статора шагового мотора таким образом, чтобы получить максимально эффективное потокозацепление. Причем такая схема не потребует преобразований Кларка, каковые обычно используются для проекции трехфазной системы токов в двухфазную, т.к. шаговые биполярные моторы изначально имеют только 2 обмотки. При таком способе управления ток меняется в обмотках синусоидально — вне зависимости от того, используется полный шаг или микрошаг. Еще одним преимуществом управления ориентацией поля является то, что такой шаговый привод будет нечувствителен к резким изменениям нагрузки — векторное управление позволяет отрегулировать момент привода «на лету» — функция, обычно доступная только при использовании сервоприводов типа PMSM.

Теперь о сервоприводах.

Читатели, возможно, в курсе, что уже достаточно долгое время существуют шаговые сервоприводы, которые используют обратную связь по позиции. Такие приводы просто считают количество шагов и добавляют(или вычитают) шаги для компенсации ошибки, и не способны корректировать угол поворота вала внутри одного шага, «на лету».

В противоположность, синусоидальная коммутация в паре с управлением ориентацией поля действительно способна компенсировать ошибки позиционирования вала внутри одного шага, возникающие из-за неидеальной геометрии деталей шаговых двигателей или нагрузки. Векторное управление магнитным полем гарантирует, что поле статора всегда перпендикулярно полю ротора, и насыщенность поля точно соответствует требуемому моменту. Это увеличивает, эффективность и динамику, и снижает флуктуации крутящего момента. Такой вид управления позволяет шаговым двигателям конкурировать с вентильными сервоприводами на скоростях до 2000 об/мин. На более высоких серводвигатели все же будут эффективней. Оптимальным диапазоном является скорость вращения до 1000 об/мин — в нем шаговые двигатели развивают больший крутящий момент, чем вентильные серводвигатели того же размера.

Приложения, в которых шаговые сервоприводы c синусоидальными токами обмоток могут заменить серводвигатели, включают в себя:

  • намоточное оборудование,
  • транспортные ленты конвейеров,
  • управление заслонками насосов
Читать еще:  Вибрация при работе двигателя элантра

а также многие другие — все те, в каких нагрузка может изменяться скачкообразно. Кроме того, при использовании таких приводов во многих случаях можно обойтись без редуктора, что делает их привлекательными в случаях, когда критичны габариты механизма. И наконец, следует отметить, что сервоприводы с векторным управлением потребляют ровно столько тока, сколько требуется — меньше нагрев, выше КПД привода. Все этим преимущества становятся очевидными, если рассмотреть привод механизма с ременной передачей, которые обычно работают от асинхронного электродвигателя. Хорошим решением будет заменить асинхронный мотор на подходящий по мощности шаговый сервопривод — как правило, таковой будет примерно втрое меньше по габаритам и весу.

Пути решения проблем

Все описанные недостатки ограничивают области применения ШД. В то время, как потенциальный рынок достаточно велик и, по прогнозам экспертов, ситуация в ближайшие годы не изменится. Поэтому компании- разработчики заняты поиском новых решений существующих проблем. Такие пути уже намечены. Это:

1. Улучшение электромеханических свойств гибридного шагового двигателя.
В последнее время на рынке появились ШД с новыми конструктивными особенностями. К ним относятся двигатели с измененным воздушным зазором, измененной формой зуба и т.д. Одной из наиболее перспективных конструкций является пятифазный ШД, обеспечивающий достаточно высокую плавность хода. Однако привод на базе такого ШД существенно увеличивается в стоимости, как за счет стоимости самого двигателя, так и в связи с усложнением системы управления. При этом изменение механики не решает проблем, связанных с пропуском шагов и невысокой скоростью разгона, так как по-прежнему не контролируется текущая позиция вала двигателя.

2. Применение векторного управления.
Наиболее перспективным решением перечисленных проблем шагового привода является усовершенствование его метода управления.

Проблему пропуска шагов наиболее эффективно можно решить за счет внедрения в привод датчика позиции и использования высокопроизводительного сигнального процессора. Причем, во избежание значительного увеличения стоимости привода, возможным решением является разработка мехатронного привода на базе ШД, представляющего собой интегрированное устройство, в состав которого входит сам двигатель, система управления и датчик позиции вала. В этом случае в качестве датчика можно использовать бескорпусные ОЕМ-датчики.

Состав Сервопривода шагового

При наличии двух таких компонент как сигнальный процессор и датчик позиции в одном устройстве можно отказаться от использования шаговых методов управления и построить систему управления на основе алгоритма векторного управления. Данный метод уже давно используется в сервоприводах на базе синхронных и асинхронных двигателей.

Алгоритм векторного управления основан на поддержании угла 90 градусов между текущей позицией ротора в рамках одного полюса и вектором токов в обмотках двигателя.

Рис. 1. График зависимости электрического момента ШД от угла между текущей позицией и вектором токов.

Как видно из графика зависимости момента от угла между текущей позицией и вектором тока (Рис.1) максимальная эффективность достигается именно при угле 90 градусов.

При этом расчет текущего угла необходимо выполнять в реальном времени с высокой частотой, так как при формировании токов вал ротора всегда стремится в позицию, заданную вектором токов.

Такой способ обеспечивает высокую эффективность управления: исключается колебание момента, развиваемого двигателем и, как следствие — вибрация; обеспечиваются высокие динамические показатели; исключается пропуск шагов.

Однако в реализации векторного управления для сервопривода шагового (СПШ) есть своя специфика.

ШД имеет 50 эквивалентных пар полюсов в отличие от синхронного двигателя с 6-ю полюсами. В результате алгоритм векторного управления должен отрабатываться в процессоре с частотой свыше 20 кГц, чтобы обеспечить поддержание угла 90 градусов с приемлемой точностью на высоких скоростях вращения. Соответственно и несущая ШИМ (широтно-импульсная модуляция) сигнала имеет ту же частоту. Как показывают исследования, компромиссной является частота 40 кГц, на которой максимальная скорость вращения, допустимая системой управления, достигает 12000 об/мин. При этом, силовые ключи (MOSFET) не переходят в режим усиления и, соответственно, обеспечивают приемлемый КПД привода.

Эффективное уменьшение влияния стоп-момента на неравномерность вращения в таком приводе достигается за счет использования замкнутого регулирования токами.

При резком увеличении скорости, связанной с наличием стоп-момента, двигатель вырабатывает противо ЭДС. Происходит изменение напряжения питания, что приводит к увеличению тока, протекающего в обмотках двигателя. Контур тока, который выполняет коррекцию задания токов каждые 25 мкс, успевает зафиксировать изменения тока и внести компенсационное воздействие, позволяющее сгладить резкие рывки вала двигателя, что и приводит к улучшению плавности хода. Оставшиеся низкочастотные колебания скорости исключаются замкнутым контуром управления скоростью. В результате неравномерность вращения определяется лишь разрешающей способностью датчика скорости (Рис. 2. ).

Рис. 2. Неравномерность вращения вала ротора шагового двигателя на различных скоростях при использовании векторного управления.

Как видно из рисунка, колебания относительно заданной скорости составляют ±1 дискрету датчика обратной связи во всем диапазоне скоростей. Например, при использовании датчика с разрешением 160000 импульсов на оборот глубина регулирования достигает 15000:1, т.е. разрешение приводапо скорости составит 0.1875 об/ мин. При этом неравномерность вращения на 100 об/мин не превысит 0.5%.

Наличие такой системы управления позволяет отказаться от дорогих пятифазных ШД. Достаточно использовать обычный гибридный ШД, при этом все его минусы «сглаживает» электроника.

Использование замкнутого регулирования током дает еще одно немаловажное преимущество — увеличение КПД привода.

Увеличение КПД привода происходит за счет того, что задаваемые токи в обмотках двигателя соответствуют нагрузке на валу двигателя. Повышенный ток подается только при появления внешнего противодействия, в отличие от разомкнутого микрошагового способа управления, где ток в обмотки двигателя подается всегда даже при нулевом противодействующем моменте.

Сервопривод шаговый, с использованием векторного управления с замкнутым контуром тока позволяет формировать предельно допустимый электрический момент во время переходного процесса. Это позволяет добиться исключительно высокой динамики без опасения перегорания обмоток и без пропуска шагов.

Например, время выполнения реверса на 500 об/мин выполняется за 18 мс, в то время как эквивалентный по мощности шаговый привод с микрошаговым управлением выполнит данную задачу лишь за 100 мс.

Схема замкнутого регулирования

Устройство шагового электродвигателя

Шаговый двигатель, работающий от постоянного тока, умеет делить один полный оборот на большое количество шагов. Устройство состоит из следующих деталей:

  • Контроллер специального назначения для шагового привода.
  • Клеммы.
  • Обмотки.
  • Блок управления или приборная модель.
  • Магнитная часть.
  • Сигнализаторы.
  • Передатчики.

Принцип работы шагового электродвигателя

Принцип работы электродвигателя состоит в следующем. На клеммы прибора подается напряжение, после чего щетки двигателя приводятся в постоянное движение. Двигатель на холостом ходу начинает преобразование входящих импульсов прямоугольного направления в положение приложенного вала, имеющего определенную направленность, и перемещает его под некоторым углом.

Читать еще:  Что такое полка двигателя

Максимальная эффективность такого электродвигателя достигается наличием нескольких зубчатых магнитов, сосредоточенных вокруг железного колеса зубчатой формы. Когда к определенному электромагниту прилагается энергия, он начинает притягивать зубья колеса. После их выравнивания по отношению к этому электромагниту, они становятся смещены относительно следующей магнитной части электродвигателя.

Первый магнит отключается, включается второй электромагнит, происходит вращение шестеренки, которая выравнивается с предыдущим колесом. Это циклическое действие происходит необходимое количество раз. Одно выполненное вращение называют шагом электродвигателя.

Преимущества и недостатки

К основным преимуществам шаговых электродвигателей относят их точность. То есть, при попадании напряжения на обмотку, прибор поворачивается на строго определенную величину угла. Еще одним несомненным достоинством можно назвать стоимость агрегата. Ведь если сравнивать их цену с, например, сервоприводами, то они стоят в 2 раза дешевле.

Основной недостаток шагового электропривода — возможное проскальзывание ротора. Причин может быть несколько:

  • Слишком высокая нагрузка на валу.
  • Неправильные настройки программы управления.
  • Скорость вращения приближается к резонансным показателям.

Решение этих проблем возможно, если использовать датчики поворота. Но автоматически эта проблема решается не всегда. В некоторых случаях задача выполнима только после остановки производственной программы. Проблема проскальзывания электродвигателя решается также путем увеличения его мощности.

Область применения шагового электродвигателя

Самыми популярными моделями шаговых электродвигателей являются те, которые имеют угловое перемещение 1,8° и 200 шагов за один оборот, а также 0,9° с 400 шагами за один оборот.

Область применения шагового электродвигателя достаточно обширна. Например, гибридные шаговые электродвигатели активно используют при создании станков с числовым программным управлением, которые работают по дереву, выполняют плазменную резку металлов или фрезерные операции. Шаговые приборы отлично подходят для управления чертежной головкой в копировальных станках с цифровым программным управлением.

Передача факсов на расстояние при помощи телефонной связи также не обходится без использования таких приборов. В космических летательных аппаратах для изучения космоса шаговые двигатели использовались, например, в ЛА Mariner как устройство для наведения телевизионных камер и спектрометров на нужные цели.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Шаговые двигатели

Шаговые двигатели состоят из ротора с постоянными магнитами и неподвижного статора, в котором расположены обмотки. Когда ток проходит через обмотки статора, он генерирует магнитный поток, который взаимодействует с магнитным полем ротора и приводит ротор в движение. Шаговые двигатели имеют очень большое количество полюсов, обычно 50 или более. Драйвер шагового двигателя последовательно подает напряжение на каждый полюс, так что ротор вращается с определенным шагом. Из-за очень большого количества полюсов движение кажется непрерывным.

Шаговые электродвигатели имеют ряд положительных качеств. Поскольку они генерируют пошаговое движение, для них, как правило, не требуется замкнутая система регулирования, что избавляет от необходимости установки энкодера или тахогенератора, что положительно сказывается на цене установки. Большое количество полюсов позволяет им генерировать очень высокий крутящий момент при нулевой скорости. Они компактны и в целом экономичны (рисунок ниже).

С другой стороны, шаговые электродвигатели имеют ограничения по скорости. Они обычно работают с максимальной эффективностью всего при 1200 об / мин или ниже. Хотя они генерируют высокий крутящий момент при нулевой скорости, крутящий момент падает при увеличении скорости (график ниже). Например, двигатель, создающий момент 3 кгс·м при нулевой скорости, может выдать только 1.5 кгс·м при 500 об / мин и всего 0.3 кгс·м при 1000 об / мин.

Теоретически можно использовать редуктор для увеличения крутящего момента, но именно здесь малая скорость шаговых двигателей становится проблемой. Добавление редуктора 10: 1 к шаговому двигателю со скоростью 1200 об / мин может повысить крутящий момент на порядок, но также снизит скорость до 120 об / мин. Если двигатель используется для шарико-винтового привода или чего-либо подобного, он, вероятно, не будет обеспечивать достаточную скорость для удовлетворения потребностей механизма.

Как правило, шаговые двигатели не изготавливаются в типоразмерах, превышающих NEMA 34, при этом большинство применений относятся к размерам двигателей NEMA 17 или NEMA 23. В результате практически невозможно найти шаговые двигатели, способные производить крутящий момент от 28 до 57 кгс·м.

На графике зеленым показана зависимость момент шагового двигателя от скорости, красным – зависимость максимального момент серводвигателя от скорости и синим – момент серводвигателя от скорости.

Шаговые двигатели также имеют ограничения по производительности. Вы можете представить себе шаговый двигатель как пружинно-массовую систему. Двигатель должен преодолеть трение, чтобы начать вращение и переместить нагрузку, после чего ротор машины не контролируется. В результате команда продвижения на пять шагов может привести к повороту двигателя только на четыре шага или шесть шагов.

Однако, если система электропривода дает команду двигателю продвинуться на 200 шагов и он сделает это за несколько шагов, ошибка составит несколько процентов. Хотя мы используем шаговые электродвигатели с разрешением от 25 000 до 50 000 шагов на оборот, но поскольку двигатель представляет собой систему с пружинно-массовой нагрузкой, наш обычный диапазон составляет от 2000 до 6000 отсчетов за оборот. Тем не менее, при этих разрешениях даже ошибка в 200 шагов соответствует доле градуса.

Добавление энкодера позволит системе точно отслеживать движение, но не сможет преодолеть базовую физику работы электрической машины. Для приложений, требующих повышенной точности позиционирования и разрешения, серводвигатели обеспечивают лучшее решение.

Маркировка согласно стандарта NEMA

Полностью NEMA стандарт так же описывает иные параметры шаговых двигателей и предусматривает следующую маркировку: NEMA DDMMLLL-CCCIVVVSSSW, где:

Так например: шаговый двигатель с диаметром 3.4″ с фланцем длиной 1.6 дюйма, током обмоток 1.2А, классом B степени нагрева, 5.3V напряжением обмотки, 200 шагами на оборот и подключением восемью проводами будет маркироваться как : NEMA 34D016-012B053200F. Хотя лично я таких маркировок не встречал.

Заключение

Мы рассмотрели все типы гибридов и схемы их взаимодействия, но в целом существует множество видов, которые сложно отнести к одной из них, поскольку с течением времени технологии все больше смешиваются и дорабатываются.

На одних используют гидромуфты с редуктором вместо планетарной передачи, на других экспериментируют с задним расположением ДВС или вообще разносят по двум осям ДВС и электродвигатель. Конструкторы не останавливаются на достигнутом и все больше развивают это направление.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector