0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое двигатель vti vtec

V-TEC, Vanos и VVT-i: как же они все работают?

Системы изменения фаз газораспределения стали революцией для двигателей внутреннего сгорания, а популярными они стали благодаря японским моделям.

Системы изменения фаз газораспределения стали революцией для двигателей внутреннего сгорания, а популярными они стали благодаря японским моделям 90-ых. Но как же самые известные системы отличаются в работе друг от друга?

Двигатели внутреннего сгорания с самого своего создания не были максимально эффективными. Средний КПД таких моторов равен 33 процентам — вся остальная энергия, созданная сгорающей топливо-воздушной смесью, тратится впустую. Поэтому любой способ сделать ДВС более энергоэффективным был востребован, а система изменения фаз газораспределения стала одним из самых удачных решений.

Система меняет фазы газораспределения (момент, в который каждый клапан открывается и закрывается во время рабочего цикла), их длительность (момент, когда клапан открыт) и подъём (насколько клапан может открыться).

Как вы знаете, впускной клапан в двигателе запускает в цилиндр топливо-воздушную смесь, которая затем сжимается, сжигается и выталкивается в открывающийся выпускной клапан. Эти клапана приводятся в движение толкателями, которыми управляет распредвал, используя набор кулачков для идеального соотношения закрытия и открытия.

К сожалению, обычные распредвалы делаются таким образом, что можно управлять только открытием клапанов. В этом и заключается проблема, так как для максимальной эффективности клапана должны закрываться и открываться по-разному на разных оборотах двигателя.

Например, на большой скорости работы мотора впускной клапан нужно открывать несколько раньше из-за того, что поршень движется настолько быстро, что не даёт попасть внутрь достаточному количеству воздуха. Если клапан открыть чуть раньше, то в цилиндр попадёт больше воздуха, что увеличит эффективность сгорания.

Поэтому вместо компромисса между распредвалами для больших и малых оборотов появилась система изменения фаз газораспределения, признанная одной из наиболее эффективных в этой области. Разные компании по-разному интерпретировали эту технологию, поэтому давайте разберёмся с самыми популярными из них.

Решение от Honda заключалось в форме распредвала, так как каждый распредвал имел два набора кулачков, смена между которыми происходила в зависимости от оборотов двигателя. VTEC (Variable Valve Timing and Lift Electronic Control) при помощи гидравлики выбирает между одним набором кулачков, когда мотор работает на низких оборотах, и другим, когда он приближается к красной зоне. Такая система в свою очередь позволила одновременно и снизить расход топлива, и повысить мощностные показатели при использовании одного распредвала, сделав моторы Honda очень разносторонними.

Гидравлическое переключение контролируется блоком управления, который использует информацию о давлении масла, температуре двигателя, скорости автомобиля и оборотов двигателя. После этого программа решает, какой из двух вариантов кулачков использовать, используя соленоид, который отправляет масляное давление посредством специфического клапана, а затем запирает механизм штифтом, закрепляя выбор за одним из вариантов.

Такая смена вариантов кулачков подразумевала, что двигатели Honda с VTEC в самом высоком диапазоне оборотов выдают максимальную мощность, как раз после того, как система «срабатывает». И пусть эффект от неё не такой, как от турбины, но многие фанаты всё равно останутся верны VTEC-моторам, рассказывая о том, как они едут на самых высоких оборотах.

Система изменения фаз газораспределения от Toyota создана по пути использования шестерён распредвала для изменения отношений между ремнём или цепью ГРМ и распредвалом. Специальный ротор внутри шкива распредвала может вращаться под нагрузкой от пружины, поворачивая распредвал на дополнительные несколько градусов, задерживая или опережая взаимодействие между зубьями шкива и вращающейся цепи.

Такая система сдвига фаз газораспределения, при которой внутренний ротор в шкиве распредвала может влиять на положение распредвала, тем самым изменяя время взаимодействия кулачков и толкателей, применяется на многих моторах Toyota. Впервые технология была представлена на двигателе 2JZ-GE, устанавливаемом на знаменитую Toyota Supra в кузове A80.

Vanos (или Variable Nockenwellensteuerung) — попытка компании BMW создать систему изменения фаз газораспрделения, и впервые она была применена на моторе M50, устанавливаемом на 5-серию в 90-ых годах прошлого века. Он также использует принцип задерживания или опережения взаимодействия механизмов ГРМ, но с использованием зубчатой передачи внутри шкива распредвала, которая двигается вместе или против распредвала, изменяя фазы работы. Этот процесс контролируется электронным блоком управления, который использует давление масла для движения зубчатой передачи вперёд или назад.

Как и в случае с остальными системами, зубчатая передача движется вперёд для того, чтобы открывать клапана немного раньше, увеличивая количество воздуха, поступающего в цилиндры и увеличивая выходную мощность двигателя. На самом деле, сначала BMW представили одиночный Vanos, который работал только на впускном распредвале в определённых режимах на разных оборотах двигателя. Немецкая компания позже разработала систему с двумя Vanos, которая считается более продвинутой, так как влияет на оба распредвала, а также регулирует положение дроссельной заслонки. Двойной Vanos был создан для S50B32, который ставили на BMW M3 в кузове E36, а также Z3 M.

Сейчас практически у каждого крупного производителя есть собственной название для системы фаз газораспределения — у Rover это VVC, у Nissan — VVL, а Ford разработали VCT. И в этом нет ничего удивительного, учитывая, что это одна из самых удачных находок для двигателей внутреннего сгорания. Благодаря ей производители смогли и уменьшить расход, и увеличить мощность своих моторов.

Но с приходом пневматического управления клапанами эти системы уйдут на покой. Однако сейчас — как раз их время.

Фотогалерея

Комментарии (0)

Читать

Посмотрите на ГАЗ-14 «Чайка», доработанный в начале 90-х в тюнинг-ателье РИДА

Самое читаемое

Последние новости

Редкий «бюджетный» лимузин на базе Mercedes W123: его продали меньше чем за 7 тысяч долларов

BMW M5 из 90-х против Bugatti Veyron: как думаете, кто победит?

В Питере продают экстремально доработанный УАЗ «Патриот». И он один из самых дорогих в России

В Москве продают австрийский военный внедорожник Puch Pinzgauer 710K за 6 миллионов рублей

Механизмы и железки

Hyundai Solaris против столба: посмотрите, что будет с «корейцем» при столкновении на скорости 55 км/ч

Посмотрите на «Ладу» с двумя рулями, которая умеет «ползать» боком, как краб

Владельцам Mercedes-Benz EQS придется ежегодно платить за доступ к полноуправляемому шасси

Посмотрите, что будет с дизельным мотором Toyota, если его на год закопать в землю, а потом попробовать завести

Посмотрите на первый запуск Ford Crown Victoria с 27-литровым V12 от танка

Демонстрационный стенд по устройству автомобиля для автошкол 60-х годов продадут за кругленькую сумму

Видео: в России провели масштабные краш-тесты самых популярных моделей автобусов

Какое будущее рынка автомобильных смазочных материалов видят эксперты

Аббревиатура VTEC полностью расшифровывается следующим образом — Variable Valve Timing and Lift Electronic Control. В переводе на русский язык означает «электронная система управления временем открытия и высотой подъема клапанов» или, если говорить языком специалистов, электронная система регулировки фаз газораспределения. Этот механизм предназначен для того, чтобы оптимизировать прохождение воздушно-топливной смеси в камеры сгорания.

Двигатель внутреннего сгорания преобразует химическую энергию, накопленную в топливе, в тепловую. Такое преобразование происходит во время сгорания горючей смеси. При этом возрастает температура и давление в цилиндре. Под давлением поршни двигателя опускаются вниз и, толкая коленчатый вал, приводят его в движение. Так химическая энергия преобразуется в механическое движение. Механическая сила определяется величиной крутящего момента. Способность двигателя поддерживать некоторую величину крутящего момента при некотором числе оборотов в минуту определяется как мощность. Мощность определяет, какую работу может производить двигатель. Весь процесс, осуществляемый двигателем внутреннего сгорания, не эффективен на 100%. На самом деле всего около 30% энергии, содержащейся в топливе, преобразуются в механическую энергию.

Теоретическая физика говорит о том, что при данном КПД для достижения высокой отдачи от мотора необходимо использовать больше топлива: в результате существенно возрастет мощность. Очевидно, что в этом случае нужно использовать двигатель с огромным рабочим объемом и поступиться принципами экономичности. Другой метод диктует необходимость предварительно сжимать топливную смесь посредством турбины и затем сжигать ее в цилиндрах небольшого размера. Однако и в этом случае расход топлива будет пугающим. В свое время концерн Honda пошел по иному пути, начав исследования с целью оптимизации работы двигателя внутреннего сгорания. В результате появилась технология VTEC, наделяющая мотор отменной экономичностью на низких оборотах и высокой мощностью при его «раскручивании».

Читать еще:  Чем лучше форсировать двигатель

Если сравнить скоростные характеристики различных двигателей, то нетрудно заметить, что у одних максимум крутящего момента достигается на низких оборотах (в диапазоне 1800-3000 об/мин), у других — на более высоких (в диапазоне 3000-4500 об/мин). Оказывается, есть зависимость между тем, каким образом на распределительном валу установлены кулачки, открывающие клапаны, и тем, какую мощность развивает мотор на различных оборотах коленчатого вала. Чтобы понять, чем это вызвано, представьте себе двигатель, работающий крайне медленно. Например, при 10-20 оборотах в минуту рабочий цикл в одном цилиндре занимает 1 секунду. При опускании поршня впускной клапан открывается, позволяя горючей смеси наполнить цилиндр, и закрывается, когда поршень достигает нижней мертвой точки. После завершения цикла сгорания поршень начнет движение вверх. При этом откроется выпускной клапан, позволив отработавшим газам покинуть рабочий объем цилиндра и закроется, когда поршень достигнет верхней мертвой точки. Такой алгоритм был бы идеален, если бы мотор работал на минимуме оборотов. Однако в реальной жизни двигатель куда энергичней.

С ростом ритма работы мотора описанный алгоритм просто не выдерживает критики. Если число оборотов коленвала достигает 4000 в минуту, клапаны открываются и закрываются 2000 раз ежеминутно, или 30-40 раз каждую секунду. На такой скорости поршню чрезвычайно сложно всосать в цилиндр необходимый объем горючей смеси. То есть в результате впускного сопротивления возникают насосные потери, и это главная причина, по которой уменьшается эффективность работы двигателя. Для облегчения участи мотора при работе на больших оборотах приходится, например, шире открывать впускной клапан. Разумеется, это упрощенное описание работы, но оно дает общее представление. Однако на малых оборотах такой алгоритм не годится: настройка распредвала «на скорость» лишь увеличит расход топлива. Следовательно, для лучшей эффективности нужно сочетать оба алгоритма работы, которые воплощены в механизме VTEC.

Появившись в 1989 году, система VTEC дважды модернизировалась, и сегодня мы имеем дело с ее третьей серией. Система VTEC использует возможности электроники и механики и позволяет двигателю эффективно распоряжаться возможностями сразу двух распредвалов, или, в упрощенных версиях, одного. Контролируя число оборотов и диапазоны работы силового агрегата, его компьютер может активизировать дополнительные кулачки с тем, чтобы подобрать наилучший режим работы.

В 1989 году на внутренний японский рынок поступили две модификации Honda Integra — RSi и XSi, использовавшие первый двигатель с системой DOHC VTEC. Ее силовой агрегат модели B16A при объеме 1,6 литра достигал мощности в 160 л.с., но при этом отличался хорошей тягой на низах, топливной экономичностью и экологической чистотой. Поклонники марки Honda до сих пор помнят и ценят этот великолепный мотор, тем более что его многократно усовершенствованный вариант и по сей день используется на моделях Civic.

Двигатель с системой DOHC VTEC имеет два pаспpедвала (один для впускных, другой для выпускных клапанов) и 4 клапана на цилиндр. Для каждой пары клапанов предусмотрена особая конструкция — группа из трех кулачков. Следовательно, если мы имеем дело с 4-цилиндровым 16-клапанным мотором с двумя распредвалами, то таких групп будет 8. Каждая группа занимается отдельной парой клапанов. Два кулачка расположены на внешних сторонах группы и отвечают за действие клапанов на низких оборотах, а средний подключается на высоких оборотах. Внешние кулачки непосредственно контактируют с клапанами: опускают их при помощи коромысел (рокеров). Отдельный средний кулачок до поры до времени вращается и вхолостую нажимает на свое коромысло, которое активируется при достижении определенного высокого числа оборотов коленвала. В дальнейшем эта центральная часть отвечает за открытие и закрытие клапанов, хотя и действует как специальный промежуточный механизм.

Когда двигатель работает на малом ходу, пары впускных и выпускных клапанов открываются соответствующими кулачками. Их форма, как и у большинства аналогичных моторов, выполнена в виде эллипса. Однако эти кулачки способны обеспечивать лишь экономичный режим работы двигателя и только на малых оборотах. При достижении высокой скорости вращения распредвала задействуется специальный механизм. «Незанятый» до этого работой средний кулачок вращался и без какого-либо эффекта нажимал на среднее коромысло, никак не связанное с клапанами. Однако во всех трех коромыслах предусмотрены отверстия, в которые под высоким давлением масла загоняется металлический пруток. Таким образом, группа жестко фиксируется и в дальнейшем работает как одно целое. Тут в работу вступает отдыхавший до этого средний кулачок. Он имеет более продолговатую форму и поэтому при его нажатии все три коромысла, а значит и клапана, опускаются гораздо ниже и на больший промежуток времени остаются открытыми. В этом случае двигатель может «дышать» свободнее, развивать и поддерживать высокий крутящий момент и хорошую мощность.

После успеха системы DOHC VTEC компания Honda с еще большим рвением подошла к развитию и использованию своей новации. Моторы с VTEC проявили себя как надежные и экономичные, стали реальной альтернативой увеличению рабочего объема или использованию турбин. Поэтому несколько позднее была представлена система SOHC VTEC. Подобно своему «коллеге» DOHC новинка также предназначалась для оптимизации работы двигателя в разных режимах. Но из-за простоты своей конструкции и более скромных показателей мощности двигатели с SOHC VTEC выпускались меньшими объемами. Одним из первых двигателей, использующих упрощенную систему, стал обновленный агрегат D15B, выдававший 130 л.с. при объеме в 1,5 л. Этот мотор с 1991 устанавливался года на Honda Civic.

В моторе SOHC предусмотрен один-единственный распредвал на весь блок цилиндров. Поэтому кулачки впускных и выпускных клапанов располагаются на одной оси. Однако здесь также предусмотрены группы-тройки, в каждой из которых есть один специальный центральный кулачок. Простота конструкции заключается в том, что в двух режимах — для низких и для высоких оборотов — могут работать только впускные клапана. Промежуточный механизм с дополнительным кулачком и коромыслом также как и в случае с DOHC VTEC перехватывает на себя открытие и закрытие впускных клапанов, в то время как выпускные всегда работают в постоянном режиме.

Может создаться впечатление, что SOHC VTEC в чем-то хуже, чем DOHC VTEC. Однако это не так: эта система имеет ряд преимуществ, среди которых простота конструкции, компактность двигателя за счет его незначительной ширины, меньший вес. Кроме того SOHC VTEC возможно вполне легко использовать на двигателях пpедыдущего поколения, тем самым модернизируя их. В итоге силовые агрегаты с SOHC VTEC достигают тех же результатов, пусть и не столь ярких и удивительных.

Если назначение описанных выше систем VTEC состоит в сочетании максимальной мощности на предельных оборотах и довольно уверенной, но экономичной работе на «низах», то VTEC-E призвана помочь двигателю в достижении предельной экономии.

Но прежде чем рассмотреть очередное изобретение Honda необходимо разобраться с теорией. Известно, что топливо предварительно смешивается с воздухом и затем воспламеняется в цилиндрах (есть еще иной вариант — непосредственный впрыск, при котором воздух и топливо поступают в цилиндры отдельно). На мощность двигателя также влияет и то, насколько однородна такая смесь. Дело в том, что на малых оборотах невысокая скорость потока при всасывании препятствует смешению топлива и воздуха. В результате на холостом ходу двигатель может работать неуверенно. Чтобы предотвратить это, в цилиндры поступает обогащенная топливом смесь, что сказывается на экономичности. Система VTEC-E способна обеспечить уверенную работу двигателя на малых оборотах на обедненной топливом горючей смеси. При этом также достигается существенная экономия. В отличие от других механизмов, в системе VTEC-E нет никаких дополнительных кулачков. Так как эта технология нацелена на снижение потребления топлива на малых оборотах, то и затрагивает она действие впускных клапанов. VTEC-E применяется только в SOHC-двигателях (с одним распредвалом) с четырьмя клапанами на цилиндp из-за его «склонности» к низкому расходу топлива.

Читать еще:  Что такое двигатель репульсин

В отличие от других VTEC-моторов, где кулачки имеют приблизительно одинаковый профиль, в силовых агрегатах с VTEC-E используются две конфигурации. Таким образом, впускные клапана приводятся в движение кулачками различной формы. Профиль одного из них имеет традиционную форму, а другой практически круглый — слегка овальный. Поэтому один из клапанов опускается в нормальном режиме, а другой едва приоткрывается. Горючая смесь проходит через нормальный клапан легко, а через приоткрытый — весьма скудно. Из-за несимметричности потоков поступающей смеси в цилиндре возникают причудливые завихpения, в которых воздух и топливо смешиваются должным образом. В результате двигатель может pаботать на бедной смеси. С увеличением оборотов концентрация топлива растет, но режим, при котором реально работает лишь один клапан, становится помехой. Поэтому, приблизительно при достижении 2500 об/мин коромысла замыкаются и приводятся в движение нормальным кулачком. Замыкание происходит точно так же как и в других системах VTEC.

Систему VTEC-E часто незаслуженно считают изобретением, нацеленным исключительно на экономию. Тем не менее, по сравнению с простыми моторами, агрегаты с таким механизмом не только экономичнее, но и мощнее. За экономию отвечает первый режим, в котором работает один клапан, а за показатели мощности — «чистокровный» VTEC, подразумевающий широкое открытие впускных клапанов. Если сравнить два аналогичных мотора, один из которых оборудован механизмом VTEC-E, то простой агрегат окажется на 6-9% слабее и прожорливей.

Трехрежимный SOHC VTEC

Этот механизм представляет собой объединение системы SOHC VTEC и SOHC VTEC-E. В отличие от всех описанных выше систем эта имеет не два режима работы, а три. В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливовоздушной смеси (как VTEC-E). В этом случае используется только один из впускных клапанов. На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент. На режиме высоких оборотов оба клапана управляются одним центральным кулачком, отвечающим за снятие с двигателя максимальной мощности. Эта система достаточно универсальна. Так, например, двигатель объемом 1,5 литра с таким газораспределительным механизмом проявляет неплохую удельную мощность: 86 л.с. на 1 л. рабочего объема. Одновременно с этим, если двигатель работает в первом, экономичном 12-клапанном режиме, расход при движении с постоянной скоростью 60 км/ч на автомобиле Honda Civic составляет около 3,5 л на 100 км.

Буква «i» в названии означает intelligent, то есть «умный». Прежние версии VTEC способны регулировать степень открытия клапанов лишь в 2-3 режимах. Конструкция нового газораспределительного механизма i-VTEC предполагает использование помимо основной системы VTEC дополнительную систему VTC (Variable Timing Control), непрерывно регулирующую момент начала открытия впускных клапанов. Открытие впускных клапанов задается в зависимости от нагрузки двигателя и регулируется посредством изменения угла установки впускного распределительного вала относительно выпускного. В двигателях с i-VTEC распредвал крепится к приводному шкиву через специальную гайку-шестерню, которая способная «доворачивать» его на угол до 60°

Применение системы VTC на ряду с VTEC позволяет эффективнее наполнять цилиндры двигателя топливо-воздушной смесью, а также улучшить полноту ее сгорания. Использование механизма i-VTEC позволяет достичь приемистости эквивалентной двигателям с рабочим объемом 2 литра, при этом топливная экономичность даже лучше чем у 1,6 литрового двигателя.

Семейство газораспределительных механизмов VTEC не представляет собой ничего волшебного, но дает просто поразительный эффект. Моторы Honda прямо-таки умеют подстраиваться под нагрузку, предоставляя удивительную мощность при скромном рабочем объеме. И в то же время на холостом и малом ходах японские моторы поражают выдающейся экономичностью. Вполне возможно, что следующим этапом в развитии систем VTEC станет механизм с отдельными соленоидами на каждый клапан, что позволит с хирургической точностью регулировать открытие клапанов.

Последний раз редактировалось Like Angel; 09.04.2007 в 05:30 . Причина: По просьбам трудящихся исправлен градус с 600 на 60

Введение в VTEC [ | ]

В обычном четырёхтактном двигателе внутреннего сгорания впускные и выпускные клапаны управляются кулачками распредвала. Форма этих кулачков определяет момент начала открытия, ход и конец открытия клапана относительно процесса работы двигателя. Ход определяет высоту открытия клапана, а продолжительность открытия отвечает на вопрос «как долго клапан был открыт». Из-за различного поведения топливо-воздушной смеси и отработанных газов в цилиндре до и после зажигания на разных оборотах двигателя, требуются различные настройки работы клапанов. Так, оптимальное соотношение момента, хода и продолжительности открытия клапана на низких оборотах, выльются в недостаточное наполнение цилиндров на высоких оборотах, что сильно уменьшит выходную мощность. И наоборот, оптимальные настройки для высоких оборотов приведут к неустойчивой работе на холостом ходу. В идеале двигатель должен уметь изменять эти установки в широких пределах, подстраиваясь под ситуацию.

На практике спроектировать и создать такой двигатель достаточно трудоёмко и нерентабельно. Предпринимались попытки использования соленоидов вместо обычных подпружиненных кулачков, но такие схемы не дошли до массового производства по причине дороговизны и сложности в исполнении.

Honda VTEC — это попытка совмещения производительности двигателя на высоких оборотах с экономичностью и стабильностью на низких.

Кроме того, в Японии существуют налоги на объём двигателя, заставляя производителей выпускать высокопроизводительные двигатели с относительно маленьким рабочим объёмом. В спортивных машинах, таких как Toyota Supra и Nissan 300ZX, мощность достигается турбонаддувом, Mazda RX-7 и RX-8 используют высокооборотистый роторный двигатель. VTEC — это ещё один подход к созданию мощного малообъёмного двигателя.

Системы VTEC общая информация и проверка состояния компонентов

Системы VTEC общая информация и проверка состояния компонентов

Некоторые из моделей автомобилей Honda оборудуются электронной системой корректировки фаз газораспределения (VTEC). На моделях Civic может быть использована система VTEC одного из двух различных типов (VTEC и VTEC-Е).

Различие между обычными двигателями и двигателями, оборудованными системой VTEC, заключается в комплектации и принципе действия клапанного механизма. Конструкция блока двигателя и всех навесных узлов и агрегатов, а также схемы организации систем смазки и охлаждения на обоих агрегатах одинаковы. Внешне оборудованный системой VTEC двигатель отличается наличием сверху на крышке головки цилиндров выпуклой надписи соответствующего содержания (VTEC).

Бортовой процессор оборудованных системой VTEC моделей способен корректировать фазы срабатывания и величину открывания впускных клапанов за счет использования различной величины кулачков распределительного вала. Процессор, в зависимости от поступающих от информационного датчика данных, либо включает, либо выключает систему.

В качестве исходных параметров для систем VTEC обоих типов используются следующие:

a) Частота вращения двигателя (об/мин);
b) Скорость движения автомобиля (мили/ч);
c) Выходной сигнал датчика положения дроссельной заслонки (TPS);
d) Текущая нагрузка на двигатель, определяемая по показаниям датчика абсолютного давления во впускном трубопроводе (МАР);
e) Температура охлаждающей жидкости.

Компоновка и принцип функционирования систем VTEC-Е несколько отличаются от таковых для систем VTEC (см. ниже).

Распределительный вал оборудован как первичными, так и вторичными кулачками привода впускных клапанов. Кулачки отличаются как по форме, так и по высоте подъемов, т.е. параметрами, определяющими продолжительность и степень открывания клапанов.

При малых оборотах двигателя вторичные клапаны срабатывают от собственных кулачков распределительного вала, имеющих очень малый подъем и остроконечную форму (т.е. клапаны приоткрываются лишь слегка и очень ненадолго), удерживая распыленное топливо от консолидации внутри головки цилиндров. При этом развивается хороший крутящий момент с высокой быстротой реагирования на газ.

Читать еще:  Что такое вна двигателя

Если возникает необходимость в повышении отдачи двигателя, вторичные коромысла блокируются с первичными с помощью специального гидравлического устройства с электронным управлением.

Вторичные коромысла перестают контактировать со своими собственными кулачками вплоть до того момента, как система не будет отключена. При этом оба клапана открываются на полную высоту и с максимальной длительностью, обеспечивая повышение оборотов и отдачи двигателя.

Кулачки привода первичных и вторичных впускных клапанов распределительного вала в данной системе одинаковы по форме и высоте подъемов. Между ними расположен дополнительный третий кулачок, именуемый также промежуточными. Эти промежуточные кулачки отличаются большей высотой и меньшей остротой подъема, что обеспечивает большие величину и продолжительность открывания клапана.

При малых оборотах двигателя как первичные, так и вторичные впускные клапаны срабатывают от своих собственных кулачков и открываются на одинаковую высоту и с одинаковой продолжительностью (в отличие от системы VTEC-Е). Когда возникает необходимость в повышении отдачи двигателя, коромысла обоих впускных клапанов посредством специального гидравлического устройства с электронным управлением блокируются с промежуточным коромыслом. При этом длительность и высота открывания обоих клапанов определяется формой промежуточного кулачка, отличающегося большей высотой и меньшей остроконечностью подъема.

Первичные и вторичные коромысла перестают контактировать со своими собственными кулачками до тех пор, пока система не будет отключена.

Система позволяет добиваться оптимального крутящего момента как при малых, так и при высоких оборотах двигателя, в зависимости от прикладываемой к нему текущей нагрузки.

Проверка состояния компонентов

Корректоры клапанных зазоров (только VTEC)

Четыре корректора клапанных зазоров помещены в держатели, образуя подобие гидравлических толкателей.

Порядок выполнения

Пластина распределения фаз, втулка и возвратная пружина (только VTEC-Е)

Четыре пластины распределения фаз с возвратными пружинами (см. иллюстрацию ниже) посажены в держатели распределительного вала на оси впускных коромысел.

А) Пластина распределения фаз
В) Возвратная пружина
С) Держатель кулачка

Как видно из иллюстрации, втулка сборки оборудована плечиками для удержания пружины.

Порядок выполнения

Порядок выполнения

1. После снятия и демонтажа сборок коромысел (см. Снятие, проверка состояния и установка сборки коромысел), извлеките также компоненты синхронизирующих узлов (см. сопроводительные иллюстрации).
Только VTEC-Е D16Y5:
А) Коромысло первичного клапана
В) Коромысло вторичного клапана
С) Поршень блокиратора
D) Пружина блокиратора
Е) Синхронизирующий поршень

Только VTEC D16Y8:
А) Коромысло первичного клапана
В) Коромысло вторичного клапана
С) Промежуточное коромысло
D) Синхронизирующие поршни

Соберите вместе компоненты сборок каждого из цилиндров, скрепите их резиновым бандажом, лишь после этого устанавливайте на ось (см. Снятие, проверка состояния и установка сборки коромысел).

Электромагнитный клапан блокировки VTEC

Неисправности в контуре электромагнитного клапана блокировки VTEC приводят к срабатыванию контрольной лампы “Проверьте двигатель” на панели приборов автомобиля. Одновременно в память блоки управления заносится код неисправности (DTC) Р1259. По конструкции клапан блокировки VTEC с встроенным датчиком-выключателем давления аналогичен используемому в системе VTEC моделей Integra. Описание процедуры проверки исправности функционирования сборки приведено в Части Ремонт двигателя без извлечения из автомобиля — модели Integra настоящей Главы.

См. Снятие, проверка состояния и установка сборки коромысел.

Коромысло первичного клапана

См. Снятие, проверка состояния и установка сборки коромысел.

Коромысло вторичного клапана

См. Снятие, проверка состояния и установка сборки коромысел.

Промежуточное коромысло (только VTEC)

См. Снятие, проверка состояния и установка сборки коромысел.

Промежуточный кулачок распределительного вала (только VTEC)

См. Снятие, проверка состояния и установка сборки коромысел.

Замена масла и фильтра АКПП — Honda Civic 4D 1.8 i-vtec
КАК СОБРАТЬ ГОНКУ? HONDA CIVIC EK3. Сколько стоит твой корч?
ПОБЕДИЛ БЫСТРЕЙШИЙ. БИТВА 2.0 КЛАССА против ЦИВИК 1.8 VTEC. Лансер 2.0МТ vs Цивик 1.8 vs Фокус 2.0
Двигатель Honda R18: Надежность, Слабые и Сильные Места, Отзывы
Японская зажигалка!! Знакомство с Honda Civic VI поколения.

Как работает i-DSI

Первая свеча зажигания, расположенная возле впускного клапана, выпускает искру, как только смесь попадает в цилиндр. Когда смесь начинает гореть, вторая свеча зажигания выпускает еще одну искру, быстро распространяя пламя по всему цилиндру для полного сгорания. Время между последовательностями зажигания варьируется в зависимости от частоты вращения двигателя для экономии энергии и максимальной мощности двигателя. Например, при средних скоростях вращения в минуту интервал между первой и второй искрами зажигания более выражен, в то время как при высоких скоростях вращения система зажигает две свечи зажигания практически одновременно.

Очередной виток развития

Ступенчатое изменение продолжительности открытия и высоты подъема клапанов позволяет не только изменять фазы газораспределения, но и практически полностью снять с дроссельной заслонки функцию регулирования нагрузки на двигатель. Речь в первую очередь о системе Valvetronic от BMW. Именно специалисты БМВ впервые добились подобных результатов. Сейчас схожими разработками обладают: Toyota (Valvematic), Nissan (VVEL), Fiat (MultiAir), Peugeot (VTI).

Открытая на небольшой угол дроссельная заслонка создает значительное противодействие движению воздушных потоков. В итоге часть полученной от сгорания топливовоздушной смеси энергии уходит на преодоление насосных потерь, что негативно сказывается на мощности и экономически автомобиля.


1 — Серводвигатель; 2 — Червячный вал; 3 — Возвратная пружина; 4 — Кулисный блок; 5 — Распредвал впускных клапанов; 6 — Рампа; 7 — Гидравлическая система компенсации клапанного зазора (HVA) на стороне впуска; 8 — Впускной клапан; 9 — Выпускной клапан; 10 — Роликовый рычаг толкателя на стороне выпуска; 11 — Гидравлическая система компенсации клапанного зазора (HVA) на стороне выпуска; 12 — Роликовый рычаг толкателя на стороне впуска; 13 — Промежуточный рычаг; 14 — Эксцентриковый вал; 15 — Червячное колесо; 16 — Распредвал выпускных клапанов;

В системе Valvetronic количество поступающего в цилиндры воздуха регулируется степенью подъема и продолжительностью открытия клапанов. Реализовать это получилось при помощи внедрения в конструкцию эксцентрикового вала и промежуточного рычага. Рычаг связан червячной передачей с сервоприводом, управляет которым ЭБУ. Изменения положения промежуточного рычага смещает воздействие коромысла в сторону большего или меньшего открытия клапанов. Более подробно принцип работы показан на видео.

Сочетание фазовращателей на валах, бесступенчатой регулировки хода и длительности открытия клапанов позволяет, по оценкам инженеров, обрести 10–15%-процентное снижение расхода топлива и аналогичную прибавку крутящего момента.

Подключение датчика DS18B20 к микроконтроллеру

Типовая схема подключения датчиков DS18B20 к микроконтроллеру:Как видно из схемы, датчик DS18B20 (или датчики) подключаются к микроконтроллеру, если они имеют общее питание, тремя проводниками:— вывод №1 — общий провод (масса, земля)— вывод №2 — он же DQ, по которому происходит общение между МК и DS18B20, подключается к любому выводу любого порта МК. Вывод DQ обязательно должен быть «подтянут» через резистор к плюсу питания— вывод №3 — питание датчика — +5 вольт
Если в устройстве используется несколько датчиков температуры, то их можно подключить к разным выводам порта МК, но тогда увеличится объем программы. Датчики лучше подключать как показано на схеме — параллельно, к одному выводу порта МК.Напомню о величине подтягивающего резистора:«Сопротивление резистора надо выбирать из компромисса между сопротивлением используемого кабеля и внешними помехами. Сопротивление резистора может быть от 5,1 до 1 кОм. Для кабелей с высоким сопротивлением жил надо использовать более высокое сопротивление. А там где присутствуют промышленные помехи – выбирать более низкое сопротивление и использовать кабель с более большим сечением провода. Для телефонной лапши (4 жилы) для 100 метров необходим резистор 3,3 кОм. Если вы применяете «витую пару» даже 2 категории длина может быть увеличена да 300 метров»

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector