Что такое двигатель параллельного возбуждения
Принцип и схема работы двигателя постоянного тока с параллельным возбуждением
Существует несколько возможных разновидностей построения эл моторов, работающих от источника постоянного напряжения. Принцип их действия одинаков, а отличия заключаются в особенностях подключения обмотки возбуждения (ОВ) и якоря (Я).
Свое название эл двигатель постоянного тока с параллельным возбуждением получил потому, что его обмотка Я и ОВ соединяются друг с другом именно таким образом. Электродвигатель такой разновидности обеспечивает нужные режимы, превосходя изделия последовательного и смешанного типов тогда, когда требуется практически постоянная скорость его функционирования.
Регулирование скорости посредством ослабления магнитного потока
Регулирование скорости посредством ослабления магнитного потока производится обычно с помощью реостата в цепи возбуждения Rр.в (смотрите рисунок 1, б в статье «Общие сведения о генераторах постоянного тока» и рисунок 1 в статье «Пуск двигателей постоянного тока»). При отсутствии добавочного сопротивления в цепи якоря (Rра = 0) и U = const характеристики n = f(Iа) и n = f(M), определяемые равенствами (7) и (9), представленными в статье «Общие сведения о двигателях постоянного тока», для разных значений Rр.в, iв или Фδ имеют вид, показанный на рисунке 2. Все характеристики n = f(Iа) сходятся на оси абсцисс (n = 0) в общей точке при весьма большом токе Iа, который, согласно выражению (5), представленному в статье «Общие сведения о двигателях постоянного тока», равен
Однако механические характеристики n = f(M) пересекают ось абсцисс в разных точках.
Нижняя характеристика на рисунке 2 соответствует номинальному потоку. Значения n при установившемся режиме работы соответствуют точкам пересечения рассматриваемых характеристик с кривой Mст = f(n) для рабочей машины, соединенной с двигателем (жирная штриховая линия на рисунке 2).
Точка холостого хода двигателя (M = M, Iа = Iа0) лежит несколько правее оси ординат на рисунке 2. С увеличением скорости вращения n вследствие увеличения механических потерь M и Iа0 также увеличиваются (тонкая штриховая линия на рисунке 2).
Если в этом режиме с помощью приложенного извне момента вращения начать увеличивать скорость вращения n, то Eа [смотрите выражение (6) в статье «Общие сведения о двигателях постоянного тока»] будет увеличиваться, а Iа и M будут, согласно равенствам (5) и (8), представленным в статье «Общие сведения о двигателях постоянного тока», уменьшаться. При Iа = 0 и M = 0 механические и магнитные потери двигателя покрываются за счет подводимой к валу механической мощности, а при дальнейшем увеличении скорости Iа и M изменят знак и двигатель перейдет в генераторный режим работы (участки характеристик на рисунке 2 левее оси ординат).
Двигатели общего применения допускают по условиям коммутации регулирование скорости ослаблением поля в пределах 1 : 2. Изготавливаются также двигатели с регулированием скорости таким способом в пределах до 1 : 5 или даже 1 : 8, но в этом случае для ограничения максимального напряжения между коллекторными пластинами необходимо увеличить воздушный зазор, регулировать поток по отдельным группам полюсов (смотрите статью «Регулирование скорости вращения и устойчивость работы двигателей постоянного тока») или применить компенсационную обмотку. Стоимость двигателя при этом увеличивается.
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Все темы данного раздела:
Понятие преобразователя
Преобразователь (чувствительный элемент) — устройство, которое преобразует изменения входной величины в соответствующий выходной сигнал, удобный для дальнейщего использования, и служит воспринимающ
Датчики измерения параметров технологического процесса
1. ВВЕДЕНИЕ Стремительное развитие электроники и вычислительной техники оказалось предпосылкой для широкой автоматизации самых разнообразных процессов в промышленности, в научны
Электромагнитные устройства автоматики, электромагнитные реле
Электромагнитное устройство, преобразующее входной электрический ток проволочной катушки, намотанной на железный сердечник, в магнитное поле, образующееся внутри и вне этого сердечника. Магнитное п
Регулирующий орган ОР
Регулирующим органом называется звено исполнительного устройства, предназначенное для изменения расхода регулируемой среды, энергии или каких-либо других величин сцелью обеспечени
Шиберы
В шиберах затвор, выполненный в виде полотна 1, перемещается перпендикулярно направлению потока Q (рис. 3). Шиберы широко применяются для регулирования расходов воздуха и газа при небольших статиче
Тензометрический метод
В настоящее время основная масса датчиков давления в нашей стране выпускаются на основе чувствительных элементов (рис.2), принципом которых является измерение деформации тензорезист
Пьезорезистивный метод
Практически все производители датчиков в России проявляют живой интерес к использованию интегральных чувствительных элементов на основе монокристаллического кремния. Это обусловлено тем, что кремни
Ионизационный метод
В основе лежит принцип регистрации потока ионизированных частиц. Аналогом являются ламповые диоды (рис.10).
Усилители
Выходные сигналы датчиков и других элементов во многих случаях оказываются слабыми и недостаточными для приведения в действие последующих элементов систем автоматического управления, например реле,
Магнитные усилители
Магнитным усилителем называется электромагнитное устройство, использующее нелинейную зависимость магнитной проницаемости ферромагнитных материалов и предназначенное для управления значительной мощн
Назначение и принцип действия трансформатора
Трансформатор – это электромагнитный статический преобразователь с двумя или более неподвижными обмотками, которые преобразуют параметры переменного тока: напряжение, ток, частота, число фаз
Устройство трансформаторов
Основные части трансформаторов – обмотки и магнитопровод. Магнитопровод состоит из стержней и ярм. На стержнях располагают обмотки, а ярма служат для соединения магнитопровода в замкнутую систему.
Основные соотношения в трансформаторе
При работе трансформатора с нагрузкой Zн в его первичной обмотке проходит ток I1, который создает МДС первичной обмотки F`1 = İ1 w1, во в
Трехфазные и многообмоточные трансформаторы
Трансформирование трехфазного тока можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу (рис. 3, а). Однако чаще для этой цели применяют трехфаз
Устройства и принцип работы машины постоянного тока
Машины постоянного тока — генераторы и двигатели — находят себе широкое применение в современных электроустановках. Они выполняются с неподвижными полюсами и вращающимся якорем. На рис. 1.1
Реакция якоря
При холостом ходе машины магнитное поле создается только обмоткой возбуждения, так как только по этой обмотке будет проходить ток. При нагрузке ток проходит и по обмотке якоря, МДС которой изменяет
Тахогенераторы постоянного тока
В системах автоматического управления широкое применение имеют тахогенераторы постоянного тока. Тахогенераторы представляют собой электрические генераторы небольшой мощност
Двигатели постоянного тока
Двигатели постоянного тока применяют в приводах, требующих плавного регулирования частот вращения в широком диапазоне. Свойства двигателей, как и генераторов, определяются способом возбуждения и с
Уравнение моментов
В электрических машинах, действующие на ротор вращающие и тормозные моменты должны уравновешивать друг друга. Вращающий момент, развиваемый двигателем в любых условиях и в любой момент времени, ура
Характеристики двигателя постоянного тока
Свойства электрических двигателей, в том числе и двигателей постоянного тока, определяются пусковыми, рабочими, механическими и регулировочными характеристиками. Пусковые характеристи
Двигатели последовательного возбуждения
Схема двигателя последовательного возбуждения приведена на рис. 4.3. Пуск его аналогичен пуску двигателя параллельного возбуждения с той лишь разницей, что такой двигатель нельзя включать без нагру
Двигатели смешанного возбуждения
В двигателе смешанного возбуждения (рис. 4.6) магнитный поток Ф создается действием двух обмоток возбуждения – параллельной ОВ1 и последовательно
Принцип действия и устройство синхронного явнополюсного двигателя
Характерный признак синхронного двигателя – вращение ротора с синхронной частотой n1 =f160/p, независимо от нагрузки на валу. Поэтому синхронные двигатели используютс
Электропривод
Тепловой режим и выбор электрических двигателей. Нагрев и охлаждение электрических машин. Закон изменения температуры в электрической машине. Выбор мощности двигателей при д
Принцип действия и устройство синхронного явнополюсного двигателя
Характерный признак синхронного двигателя – вращение ротора с синхронной частотой n1 =f160/p, независимо от нагрузки на валу. Поэтому синхронные двигатели используютс
Виды шаговых двигателей
Существуют три основных типа шаговых двигателей: · двигатели с переменным магнитным сопротивлением · двигатели с постоянными магнитами · гибридные двигатели Опре
Основные виды машин переменного тока
В синхронных машинах нормальных типов ротор вращается с такой же скоростью и в том же направлении, как и вращающееся магнитное поле. Таким образом, вращение ротора происходит в такт, или синхронно,
Устройство асинхронной машины
Неподвижная часть машины переменного тока называется статором, а подвижная часть — ротором. Сердечники статора и ротора асинхронных машин собираются из листов электротехнической стали (рис. 2), кот
Скоростная характеристика.
Зависимость n=f(Ia) при Uн=const и Iв=const
Из уравнения ЭДС для электродвигателя
Как видно из выражения,частота вращения двигателя зависит от двух факторов — изменения тока нагрузки и потока. При увеличении тока нагрузки падение напряжения в сопротивлении цепи якоря увеличивается, а частота вращения двигателя уменьшается.
Поперечная реакция якоря размагничивает двигатель, т.е. с ростом тока Ia уменьшается поток и, следовательно, увеличиваются обороты двигателя. Таким образом, оба фактора действуют в отношении оборотов машины встречно и вид скоростной характеристики будет определяется их результирующим действием.
На рис. 2 показаны три разные скоростные линии двигателя (кривые 1,2,3). Кривая 1 — скоростная характеристика при преобладании влияния Ia?r,кривая 2 — оба фактора приблизительно уравновешиваются, кривая 3 — преобладает фактор размагничивающего действия реакции якоря.
Рис. 2 — Характеристики двигателя параллельного возбуждения
Ввиду того, что в реальных машинах изменение потока Ф незначительно, скоростная характеристика является практически прямой линией. На ряде современных машин параллельного возбуждения для компенсации влияния поперечной реакции якоря устанавливается дополнительная стабилизирующая обмотка возбуждения, которая полностью или частично компенсирует влияние реакции якоря.
Нормальной формой скоростной характеристики, при которой обеспечивается устойчивая работа двигателя, имеет вид кривой 1.
Наклон характеристики определяется величиной сопротивления цепи якоря ?r без учета реакции якоря. Когда добавочных сопротивлений в цепь якоря не включено, характеристика называется естественной. Естественная характеристика двигателя параллельного возбуждения достаточно жесткая. Обычно , где no — частота вращения при холостом ходе. При включении в цепь якоря добавочных сопротивлений Rрг, наклон характеристик увеличивается, они становятся «мягкими» и называются искусственными или реостатными.
Моментная характеристика
Это зависимость М=f(Ia) при rв=const, U=Uн и ?r=const. В установившемся режиме работы двигателя согласно
имеем Mэм = M2+M0 = смIaФ. Если бы в процессе работы машины поток Ф не изменялся, то моментная характеристика представляла бы собой прямую (линия 4, рисунок 2). В действительности поток Ф с ростом тока Ia несколько уменьшается из-за размагничивающего действия реакции якоря, поэтому моментная характеристика слегка наклонена вниз (кривая 5). Характеристика полезного момента располагается ниже кривой электромагнитного момента на величину момента холостого хода (кривая 6).
Список используемой литературы
1. Кацман М.М. Электрические машины. — М.: Высш. шк., 1993.
2. Копылов И.П. Электрические машины. — М.: Энергоатомиздат, 1986
Размещено на Allbest.ru
Подобные документы
Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.
реферат [3,2 M], добавлен 12.11.2009
Принцип действия генератора постоянного тока. Якорные обмотки и процесс возбуждения машин постоянного тока. Обмотка с «мертвой» секцией. Пример выполнения простой петлевой и волновой обмотки. Двигатель постоянного тока с последовательным возбуждением.
презентация [4,9 M], добавлен 09.11.2013
Регулирование частоты вращения двигателей постоянного тока посредством изменения потока возбуждения. Максимально-токовая защита электропривода. Скоростные характеристики двигателя. Схемы силовых цепей двигателей постоянного тока и асинхронных двигателей.
курсовая работа [2,5 M], добавлен 30.03.2014
Конструкция и принцип действия электрических машин постоянного тока. Исследование нагрузочной, внешней и регулировочной характеристик и рабочих свойств генератора с независимым возбуждением. Особенности пуска двигателя с параллельной системой возбуждения.
лабораторная работа [904,2 K], добавлен 09.02.2014
История открытия и создания двигателей постоянного тока. Принцип действия современных электродвигателей. Преимущества и недостатки двигателей постоянного тока. Регулирование при помощи изменения напряжения. Основные линейные характеристики двигателя.
курсовая работа [1,3 M], добавлен 14.01.2018
Где используются
Еще совсем недавно генераторы постоянного тока устанавливались на транспорте для железных дорог. Но сейчас их вытесняют синхронные трехфазные устройства. Переменный ток синхронных агрегатов выпрямляют полупроводниковыми установками. Некоторые новые локомотивы используют асинхронные двигатели, которые работают на переменном токе.
Применение ГПТ
Такие же обстоятельства и с автогенераторами, которые постепенно замещают асинхронными устройствами с дальнейшим выпрямлением.
Сварочный генератор
Стоит заметить, что передвижное оборудование для сварки (имеющие автономное питание) обычно находится в паре с таким генератором. Отдельные отрасли промышленности продолжают применять мощные агрегаты описанного типа.