0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое аппаратура защиты двигателя

Электрические аппараты защиты и управления

Электрические аппараты защиты используются в силовых электрических цепях для защиты и управления.

электрические аппараты защиты

К устройствам защиты можно отнести устройства плавного пуска электродвигателей. Они предназначены для плавного запуска асинхронных короткозамкнутых электродвигателей методом постепенного повышения напряжения на статоре двигателя. Посмотреть устройства плавного пуска можно на сайте https://instart-info.ru/.

Защита электродвигателя

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Защита электродвигателя – это комплекс организационных и технических мероприятий, направленных на повышение продолжительности периода эксплуатации машины и профилактику её поломок, вызванных воздействием внешних факторов. В частности, они направлены на предотвращение перегрева, коротких замыканий, попадания влаги, неполнофазного режима работы и подобных проблем.

Целесообразно рассматривать следующие виды защиты электродвигателя:

  • от короткого замыкания;
  • от пропадания фазы (неполнофазного режима);
  • от перегрева (температурная);
  • от попадания влаги;
  • от перегрузки по току (электрическая).

Защита электродвигателя от короткого замыкания

Для защиты электродвигателя от короткого замыкания применяются специальные аппараты мгновенного действия, задача которых – прекратить подачу тока в случае появления замыкания в цепи. Технические решения определяются мощностью машины.

Так, для электродвигателей, работающих в сетях с напряжением до 500 В целесообразно использовать плавкие предохранители, однако можно так же использовать автоматические выключатели с времятоковой характеристикой С или D в зависимости от кратности пускового тока ЭД. Для машин с большим напряжением или высокой мощностью рекомендуется применять электромагнитные реле либо автоматические выключатели с ЭМ-расцепителем.

Аппараты мгновенного выключения подачи электричества устанавливаются таким образом, чтобы быть отстроенными от пусковых токов и токов самозапуска.

Защита электродвигателя от пропадания фазы

Защита электродвигателя от неполнофазного режима (пропадания одной из фаз) применяется в трёхфазных машинах. Она может быть реализована через релейный или диоднотранзисторный механизм. Первый вариант наиболее распространён, поскольку обеспечивает высокую скорость срабатывания, отличается надёжностью, низкой ценой и простотой в реализации.

Обычно реле контроля фаз устанавливается в сети катушки контактора ЭД. В этом случае оно прекращает подачу напряжения при потере одной из фаз только на машину.

Защита электродвигателя от перегрева

Температурная защита электродвигателя от перегрева, вызванного отличными от перегрузок факторами, реализовывается посредством установки соответствующего реле. Реле подключается к позисторным датчикам температуры, встраиваемым в обмотки статора, и размыкает цепь питания при превышении допустимых параметров нагрева.

Тем не менее, такая тепловая защита электродвигателя применяется нечасто. Это обусловлено тем, что обычно электродвигатели «сами по себе» не перегреваются, превышение температуры вызывается перегрузкой или коротким замыканием в обмотках, для защиты от которых используются другие механизмы.

Защита электродвигателя от перегрузки

Защита электродвигателя от перегрузки очень схожа с защитой от перегрева, поскольку повышение температуры обмоток является заметным «симптомом» перегрузки. Как следствие, защитные устройства очень часто базируются на термочувствительных или плавких элементах.

Подобный принцип действия реализуется в температурных и тепловых реле, а также автоматических выключателях с тепловым расцепителем. Все они оснащаются термочувствительным датчиком, который устанавливается непосредственно в обмотки электродвигателя.

Иной принцип реализовывается в термореле. Расцепитель в них срабатывает при превышении силой тока определённых показателей.

И, наконец, реле с часовым механизмом защищают электродвигатель от перегрузки, просто отключая его по истечении определённого времени работы.

Электрическая защита двигателя

Токовая защита двигателя реализуется через электромагнитное реле. При превышении силой тока определённых значений цепь просто размыкается, и машина останавливается.

А вот от повышения или понижения напряжения – регулярно. И в ней также используются электромагнитные реле. Впрочем, сейчас они всё чаще заменяются микропроцессорными, которые способны к самостоятельному замеру напряжения и размыканию цепи в случае понижения ниже минимального уровня.

Электромагнитные реле, использующиеся для электрической защиты двигателя, также предотвращают самопроизвольный старт машины после возобновления питания.

Защита электродвигателя от воды

Защита электродвигателя от воды осуществляется как непосредственно производителем машины, так и конструктором агрегата, в котором данный электродвигатель применяется.

Каждый электродвигатель выполняется в корпусе с определённой степенью защиты от воды. Она характеризуется не только климатическим исполнением, но и, например, сертификацией IP. Так, электродвигатели с сертификацией IP54 защищены от водяных брызг независимо от стороны, с которой оные пришли, а с сертификацией IP56 – от сильных водяных струй, также со всех сторон.

В принципе, при соблюдении целостности изоляции обмоток вода электродвигателю не страшна. Однако для повышения защиты от её негативного действия стоит изолировать контакты подключённых фаз, а также выполнять корпуса агрегатов, в которых используется электродвигатель, в водонепроницаемом или водозащищённом корпусе.

Защита от короткого замыкания

Короткое замыкание (КЗ) может произойти не только в обмотке двигателя, но также в коробке с клеммами, в питающем кабеле или пусковой схеме. По этой причине целесообразно устанавливать защиту от КЗ на вводе питания пускателя. Обычно применяют предохранители и защитные автоматы, причем трехполюсные автоматы предпочтительнее, поскольку в случае аварии они полностью отключают питание от электродвигателя — при коротком замыкании срабатывает электромагнитный расцепитель.

Читать еще:  Двигатель 417 плохо заводится на горячую

Дополнительные свойства коммутирующей аппаратуры

Автомат защиты двигателя рассчитан для работы в определённом диапазоне температур окружающего воздуха. После превышения максимально установленного изготовителем предела могут происходить ложные срабатывания. Если же выключатель поставить в слишком холодном месте, то он вообще не отключится в нужный момент. Поэтому при необходимости монтажниками предусматривается соответствующая техническая компенсация.

На производстве могут возникнуть ситуации, когда из строя выходит сам автомат, а остальные элементы остаются исправными. В некоторых моделях предусмотрена функция отключения защиты на лицевой панели выключателя. Это временная мера до установки нового устройства в целях обеспечения непрерывной сдачи продукции. Однако возникает риск вывести из строя дорогостоящий элемент — двигатель.

Виды и типы

Современные производители предлагают самые разные виды и типы УЗО. Два самых популярных типа агрегатов по своему внутреннему исполнению на рынке электротоваров – это электромеханические (не зависят от силы тока) и электронные (зависят). Также выделяют селективные и противопожарные устройства.

Электромеханическое

Электромеханические УЗО широко популярны в использовании и применяются в электрических цепях переменного тока. Чем это вызвано? Тем, что при обнаружении утечки такое устройство сработает, предотвратив печальные последствия даже при самом мизерном напряжении.

Такой тип УЗО во многих странах считается эталоном качества и тем, которое обязательно к повсеместному использованию. Немудрено, ведь такое УЗО будет работоспособным даже при отсутствии нуля в сети и может спасти чью-то жизнь.

Электронное

Такие УЗО легко найти на любом строительном рынке. Разница их от электромеханических в наличии внутри платы с усилителем, для работы которой необходимо питание.

Однако у таких УЗО, как уже было сказано, есть огромный недостаток – не факт, что они сработают при утечке тока (все зависит от напряжения в сети). Если отгорел ноль, а фаза осталась, то риск поражения током никуда не девается.

ОБРАТИТЕ ВНИМАНИЕ! Мы ведем речь о преимуществах и недостатках УЗО в целом, а не конкретных моделей. Если сильно «повезет», вы можете стать обладателем некачественного УЗО как электромеханического, так и электронного.

Селективное

Главное отличие селективного УЗО от «собратьев» — наличие в схеме функции выдержки времени отключения цепи, которой питается нагрузка, т.е. селективности. Зачастую этот параметр не превышает 40 мс. Из этого мы делаем вывод, что селективные приборы не годятся для защиты от поражения при непосредственном прикосновении.

Ещё одной особенностью селективных агрегатов является хорошая устойчивость по реакции на скачки тока и напряжения (вероятность ложных срабатываний почти нулевая).

Противопожарное

Как следует из названия, такие УЗО используются в системах электроснабжения квартир и домов для предотвращения возгораний. Однако защитить человека они не в состоянии так как ток утечки, на который они рассчитаны равен 100 или 300 мА.

Обычно эти агрегаты устанавливаются в щитах учета или в этажных распределительных щитах. Их основная задача:

  • защита вводного кабеля;
  • защиты линий потребителей, в которых дифференциальная защита не установлена;
  • как дополнительная ступень защиты (если стоящий ниже него аппарат вдруг не сработал).

Количество полюсов

Так как УЗО работает на сравнении токов, которые проникают сквозь дифференциальный орган, то численность полюсов у агрегата совпадает с числом токоведущих проводников. В некоторых случаях УЗО дозволено использовать с 4-мя полюсами для работы в двух- или трехпроводной сети.

При этом не забудьте оставить в запасе свободные полюса фаз. Агрегат будет благополучно делать свое дело не полностью, а частично, что, в общем-то, невыгодно с финансовой точки зрения, но возможно.

Термисторная защита электродвигателей и реле термисторной защиты двигателя

Термисторная (позисторная) защита электродвигателей

Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя. Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC). Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).

Термочувствительные защитные устройства: термисторы, позисторы

В качестве датчиков температуры получили применение термисторы и позисторы (РТС – резисторы) — полупроводниковые резисторы, изменяющие свое сопротивление от температуры. Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).

Читать еще:  Cdi двигатель вито плохо заводится

Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 — открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети, двигатель останавливается.

Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

  • Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.
  • Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя принудительного охлаждения. Следующей областью применения термисторной защиты является температурный контроль в трансформаторах, жидкостях и подшипниках для их защиты от перегрева.
  • Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.
  • Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Виды термисторных реле различных производителей:

Реле термисторной защиты двигателя TER-7 ELCO (Чехия)

  • контролирует температуру обмотки электродвигателя в температ. интервале, данном сопротивл. PTC термистора фиксированный настроенный уровень коммутации
  • в качестве считывающего элемента применяетсчя термистор PTC встроенный в обмотку электродвигателя его производителем, возможно использование внешнего PTC сенсора
  • функция ПАМЯТЬ — реле в случае ошибки блокируется до момента вмешательства персонала (наж. кнопки RESET)
    RESET ошибочного состояния:
    a) кнопкой на передней панели
    b) внешним контактом (на расстоянии по двум проводам)
  • функция контроля короткого замыкани или отключения сенсора , состояние нарушения сенсора указывает мигающий красный светодиодный индикатор
  • выходной контакт 2x переключ. 8 A / 250 V AC1
  • состояние превышение температуры обмотки двигателя указывает светящийся красный светодиодный индикатор
  • универсальное напряжение питания AC/ DC 24 — 240 V
  • клеммы сенсора не изолированы гальванически, но их можно замкнуть с клеммой PE без поломки устройства, в случае питания от сети должен быть подключен нейтраль на клемму A2
Читать еще:  Чем мыть сальники двигателя

Реле термисторной защиты электродвигателя РТ-М01-1-15 (МЕАНДР, Россия)

  • контролирует температуру двигателей, оснащенные позисторами (термисторы с положительным температурным коэффициентом — РТС резисторы), встроенные в обмотку двигателя ( производителем).
  • коммутируемый ток 5А/250В (пиковый 16А), контакты реле 1з+1р
  • индикация рабочих состояний:
  • (напряжение питания, срабатывание реле, перегрев двигателя, КЗ датчиков)
  • напряжение питания АС 220, 100, 380 (по исполнениям)

Реле контроля температуры двигателя E3TF01 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. Реле контроля температуры двигателя G2TF02 (PTC), 2ПК (требуется модуль TR2)TELE Серия GAMMA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. Реле термисторной защиты двигателя CR-810 F&F ЕвроАвтоматика (Белоруссия)

  • контроль температуры электродвигателей, генераторов, трансформаторов и защита их от перегрева
  • датчики РТС устанавливаются в обмотках электродвигателя производителем и в комплект не входят (термисторы РТС соединенные последовательно от 1 до 6 штук)
  • напряжение питания 230V AC и 24V AC/DC
  • максимальный комутируемый ток 16А, 1 переключающий контакт
  • контроль КЗ в цепи термисторных датчиков
  • с ростом температуры электродвигателя растет сопротивление цепи термисторных датчиков, при достижении более 3000 Ом питание отключается (реле разрывает цепь питания катушки контактора), включение происходит автоматически при снижении температуры и соответсвенно сопротивления до 1800 Ом.

Реле контроля температуры двигателя MTR01, MTR02 BMR (Чехия)

  • Реле контролирует температуру обмотки электрического двигателя. Принцип действия основан на измерении сопротивления термистора, встроенного в двигатель.
  • Устройство также контролирует короткое замыкание или пропадание фазы. Реле имеет один выходной перекидной контакт на ток 8 А.
  • Модификация MTR01 24V/ MTR02 24V предназначена для напряжения питания 24 В. Остальные параметры.
  • MTR02 с гальванической изоляцией
  • Сопротивление PTC в раб. режиме 50 Ω 3,3кΩ или PTC Реле контроля температуры двигателя BTR-12EBTR Electronic Systems, «METZ CONNECT» (Германия)

  • реле термистор применяется для защиты моторов от термических перегрузок, возникающих при механических перегрузках в приводах или при использовании электродвигателей под перенапряжением. Для регистрации температуры применяется РТС = сопротивление с позитивным температурным коэффициентом, которые позиционируются в месте наибольшего нагрева.
  • выпускается с памятью ошибки и без ЗУ (запоминающее устройство)
  • напряжение питания 230V AC / 24V AC/DC
  • предельно допустимый ток контактов 6А (1 или 2 переключающих контакта)

Реле термической защиты Grundfos MS 220 C Grundfos/Ziehl (Германия)

  • Реле Grundfos MS 220C предназначено для преобразования термисторного сигнала в релейный и передачи его на пускатель в насосах с мощностью двигателя более 3.0 кВт.
  • напряжение питания AC/DC 24 — 240V (и др. в зависимости от исполнения 110,400V)
  • 1 CO, ток контактов 6А

Реле контроля температуры двигателя серии 71.91 и 71.92 Finder (Италия)

Термисторное реле определения температуры для промышленного применения.

Реле Finder термисторной защиты двигателя [71.91.8.230.0300]

  • 1 нормально разомкнутый контакт, без памяти отказов
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

Реле Finder термисторной защиты двигателя (с памятью) [71.92.8.230.0401]

  • Термисторное реле с памятью отказов
  • 2 перекидных контакта
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Память отказов выбирается переключателем
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

Особенности штатной защиты

Штатная стандартная противоугонная система устанавливается на автомобиль производителем. Это означает, что компания разрабатывает общее решение для массового рынка с одинаковой конфигурацией и устройствами. Защита отличается дешевизной и простотой эксплуатации, что говорит о низкой надежности работы.

Массовые решения легче взламывать, поскольку угонщики уже не раз сталкивались с подобными защитными устройствами. Для увеличения надежности необходимо использовать дополнительные элементы.

Учитывая растущее количество краж, противоугонные решения необходимо устанавливать на все автомобили. Страхование и штатные устройства не способны предотвратить угон или компенсировать потери. Дешевле противодействовать краже, чем разбираться с ее последствиями.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector