Чем запускается реактивный двигатель
Турбореактивный двигатель самолета: устройство и принцип работы
Совершая полет в самолете в большинстве случаев люди никогда не задумываются о том, как работает его двигатель. Но на самом деле о работе двигателя и реактивной тяги с помощью, которой работает сам двигатель, знали ее в Античное время. Но применить эти знания на практике смогли не так давно, так как раньше не технологии не позволяли никому достичь его исправной работы. Гонка вооружения между Англией и Германией стала толчком к созданию ТРД (турбореактивного двигателя).
В работе ТРД самолета нет никаких сложностей, принцип его работы может понять почти каждый человек. Но данный двигатель имеет несколько нюансов, их соблюдение контролируется под строгим присмотром руководства. Для того чтобы авиалайнер смог держаться в небе, необходима идеальная работа двигателя. Так как от работы двигателя напрямую зависят жизни пассажиров находящихся на борту авиатранспорта.
Содержание
В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель. ПВРД привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на гиперзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).
В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевым ПВРД, Leduc 010. Далее в течение 10 лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые Leduc 021 и Leduc 022, а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным.
Обладая рядом недостатков для использования на пилотируемых самолётах (нулевая тяга на месте, низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ракет, благодаря своей простоте, а, следовательно, дешевизне и надёжности. Начиная с 50-х годов XX века в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя.
В СССР с 1954 по 1960 гг в ОКБ-301 под руководством С.А.Лавочкина, разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД, разработанный группой М. М. Бондарюка, и имевший уникальные для своего времени характеристики: эффективная работа на скорости свыше 3М, и на высоте 17 км. В 1957 году проект вступил в стадию лётных испытаний, в ходе которых выявился ряд проблем, в частности, с точностью наведения, которые предстояло разрешить, и на это требовалось время, которое трудно было определить. Между тем, в том же году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководством С. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Смерть генерального конструктора С. А. Лавочкина в 1960 г окончательно похоронила проект. Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД: П-800 Оникс, П-270 Москит.
Работа системы [ править | править код ]
Электростартёр [ править | править код ]
Электрическая раскрутка от стартёра или стартёр-генератора обычно применяется на небольших ГТД и ВСУ. Питание подаётся от наземных источников электроэнергии, а также от бортовых аккумуляторов или генератора работающей бортовой ВСУ. На наиболее крупных двигателях с электрозапуском (к примеру, АИ-20, оборудованный двумя стартёр-генераторами СтГ-12, АИ-24, оборудованный одним СтГ-18) вал стартёр-генератора соединяется с валом ГТД через двухскоростной редуктор и обгонную муфту, встроенные в СтГ. Передаточное отношение редуктора автоматически меняется, в зависимости от направления передачи крутящего момента — в стартёрном режиме оно больше, так как якорь соединяется с двигателем через планетарный редуктор, а в генераторном режиме напрямую. Кроме того, применяется ступенчатая подача электроэнергии для уменьшения нагрузки на трансмиссию и большей плавности хода. Для этого применяются выводимые по мере раскрутки ротора пусковые резисторы, ослабление магнитного потока стартёра на больших оборотах, а в старых системах запуска применялось пересоединение источников (батарей или коллекторов наземного генератора) с параллельного соединения на последовательное — так называемый запуск 24/48 вольт.
Турбостартёр [ править | править код ]
Более мощные авиадвигатели (АЛ-31Ф, стоящий на Су-27, НК-12 — двигатель Ту-95 и Ту-142, или ныне не эксплуатируемый АМ-3) раскручиваются от работающего турбостартёра (ТС), который представляет собой малогабаритный газотурбинный двигатель, который в свою очередь, имеет небольшой электростартёр, систему зажигания и подачи топлива, но в упрощённом виде. ТС обычно работает на том же топливе, что и основной двигатель, но бывают и исключения — С-300М, стоящий на АМ-3, работал на бензине Б-70. Валы турбостартёра и двигателя соединены через редуктор и обгонную муфту. ТС может быть как одновальным (С-300М), в этом случае ротор двигателя раскручивается от ротора стартёра через гидромуфту, так и со свободной турбиной (ТС-12, стоящий на НК-12) — одна турбина служит для привода компрессора ТС, а вторая — свободная — служит для раскрутки компрессора двигателя. Процесс запуска турбостартёра и время его работы регламентируются программным устройством.
Воздушный турбостартёр [ править | править код ]
Воздушный стартёр — это турбоагрегат, работающий на сжатом воздухе. Сжатый воздух, как правило, поступает от турбины компрессора работающей ВСУ, представляющей собой малогабаритный автономный ГТД, выполняющий на борту летательного аппарата роль энергоузла. Сжатый воздух может подаваться и от наземных установок или воздушных баллонов, а также от турбины компрессора соседнего, уже запущенного авиадвигателя. Воздушные стартёры ввиду простоты и надёжности нашли широкое применение на мощных двигателях — например, Д-18Т (Ан-124 «Руслан»), CFM56 (Airbus A320, Boeing 737), ТВ3-117 (Ми-8М, Ми-24).
Управление запуском [ править | править код ]
В процессе раскрутки, в строго заданной последовательности включается подача пускового топлива к пусковым форсункам и система зажигания. Подача топлива обеспечивается топливными насосами, заслонками и электрокранами, до момента полного воспламенения основного топлива и начала интенсивной раскрутки турбины. После воспламенения топлива система зажигания автоматически выключается.
Процесс запуска регламентируется программным устройством (автоматической панелью запуска — АПД), представляющим собой электромеханический программно-временной агрегат, состоящий из электродвигателя постоянного тока, редуктора, центробежного регулятора частоты вращения и пакета профилированных дисков с микровыключателями. Более современные системы собраны на полупроводниковой элементной базе. Сигналы определённых частот вращения турбины ГТД снимаются центробежными выключателями или определяются тахометрической аппаратурой двигателя. Управляющие программные сигналы подаются на блоки, агрегаты, заслонки, электрокраны не напрямую, а через силовую коммутационную аппаратуру, реле и контакторы.
Зажигание [ править | править код ]
Система зажигания состоит из агрегата зажигания (индукционной катушки), преобразующего напряжение бортсети в переменный ток высокой частоты, и свечей зажигания.
При запуске двигателя в воздухе (неважно, ТРД или ТВД) раскрутка турбины происходит от набегающего потока воздуха, поэтому при заданных оборотах авторотации включается подача топлива и зажигание, программа наземного запуска не включается. Признаком успешного запуска является рост оборотов и повышение температуры выходящих газов.
Для прекращения работы двигателя служит отсечной топливный клапан, который прерывает поступление топлива в камеру сгорания. Этот клапан управляется рычагом останова двигателя (РОД) или стоп-краном.
В процессе запуска двигателя система контролирует достаточно много параметров. Программа автоматически прекращается при затянутом запуске (зависании оборотов), превышении температуры газов за турбиной или падении давления масла, и конечно, при срабатывании пожарной сигнализации. Впрочем, в любой момент запуск двигателя может прекратить лётчик или бортинженер нажатием на кнопку «стоп» или переводом РОД.
Фантастические путешествия
О полетах в космос человечество мечтало давно. Об этом свидетельствуют произведения писателей-фантастов, которые для достижения этой цели предлагали самые разнообразные средства. Например, герой рассказа французского писателя Эркюля Савиньена Сирано де Бержерака достиг Луны на железной повозке, над которой постоянно подбрасывался сильный магнит. До этой же планеты добрался и знаменитый Мюнхгаузен. Совершить путешествие ему помог гигантский стебель боба.
Реактивное движение использовалось в Китае еще в первом тысячелетии до нашей эры. Своеобразными ракетами для забавы при этом служили бамбуковые трубки, которые начинялись порохом. Кстати, проект первого на нашей планете автомобиля, созданный Ньютоном, был также с реактивным двигателем.
Ранние концепции реактивного движения
Эолипил 150 г. до н.э. был создан как любопытство и никогда не использовался для каких-либо практических механических целей. На самом деле, только после изобретения китайской художницей ракеты фейерверка в 13-м веке практическое использование реактивного двигателя было впервые осуществлено.
В 1633 году Осман Лагари Хасан Челеби использовал ракету в форме конуса, приводимую в движение реактивным двигателем, чтобы взлететь в воздух, и набор крыльев, чтобы скользить обратно к успешной посадке. Однако из-за того, что ракеты неэффективны на низких скоростях для авиации общего назначения, такое использование реактивного двигателя было, по сути, одноразовым трюком. В любом случае его усилия были вознаграждены позицией в Османской армии.
Между 1600-ми и Второй мировой войной многие ученые экспериментировали с гибридными двигателями для приведения в движение самолетов. Многие использовали одну из форм поршневого двигателя — в том числе линейные и роторные и статические радиальные двигатели с воздушным и жидкостным охлаждением — в качестве источника энергии для самолетов.
Освоение космоса
Статья Циолковского, опубликованная в периодическом издании «Научное обозрение», утвердила за ученым репутацию мечтателя. Его доводов никто не принял всерьез.
Идею Циолковского реализовали советские ученые. Возглавляемые Сергеем Павловичем Королевым, они осуществили запуск первого искусственного спутника Земли. 4 октября 1957 г. этот аппарат доставила на орбиту ракета с реактивным двигателем. Работа РД была основана на преобразовании химической энергии, которая передается топливом газовой струе, превращаясь в энергию кинетическую. При этом ракета совершает движение в обратном направлении.
Реактивный двигатель, принцип работы которого используется уже много лет, находит свое применение не только в космонавтике, но и в авиации. Но более всего его используют для запуска ракет. Ведь только РД способен перемещать аппарат в пространстве, в котором отсутствует любая среда.
Реактивное движение в природе
Во время летнего отдыха на юге практически каждый из нас, купаясь в море, встречался с медузами. Но мало кто задумывался о том, что эти животные перемещаются так же, как реактивный двигатель. Принцип работы в природе подобного агрегата можно наблюдать при перемещении некоторых видов морских планктонов и личинок стрекоз. Причем КПД этих беспозвоночных зачастую выше, чем у технических средств.
Кто еще может наглядно продемонстрировать, какой имеет реактивный двигатель принцип работы? Кальмар, осьминог и каракатица. Подобное движение совершают и многие другие морские моллюски. Возьмем, например, каракатицу. Она вбирает воду в свою жаберную полость и энергично выбрасывает ее через воронку, которую направляет назад или вбок. При этом моллюск способен совершать движения в нужную сторону.
Принцип работы реактивного двигателя можно наблюдать и при перемещении сальца. Это морское животное принимает воду в широкую полость. После этого мышцы его тела сокращаются, выталкивая жидкость через отверстие, находящееся сзади. Реакция получаемой при этом струи позволяет сальце совершать движение вперед.
Ракетный двигатель
(РД),
реактивный двигатель
, использующий для своей работы только вещества и источники энергии, имеющиеся в запасе на перемещающемся аппарате (летательном, наземном, подводном). Т. о., в отличие от
воздушно-реактивных двигателей
, для работы РД не требуется окружающая среда (воздух, вода). В зависимости от вида энергии, преобразующейся в РД в кинетическую энергию реактивной струи, различают химические (термохимические) ракетные двигатели (ХРД),
ядерные ракетные двигатели
(ЯРД),
электрические ракетные двигатели
(ЭРД). Наибольшее распространение получили ХРД, т. е. РД, работающие на химическом ракетном топливе. ЯРД и ЭРД получат, вероятно, значительное распространение в будущем, главным образом на
космических летательных аппаратах.
Известно большое число химических РД, различающихся по компонентам топлива (окислителю и горючему) их агрегатному состоянию, значению реактивной тяги
, конструкции, назначению и т.п. Однако принципиальные схемы и рабочие процессы различных типов ХРД практически аналогичны. В любом из них имеется основной агрегат, состоящий из
камеры сгорания
и
реактивного сопла
(
рис.
, а). В камере идёт окисление горючего и выделение продуктов реакции — раскалённых газов. В реактивном сопле газы разгоняются (в результате расширения) и вытекают с большой скоростью наружу, образуя реактивную струю, т. е. создавая реактивную тягу двигателя. За малым исключением все ХРД работают в непрерывном режиме, давление газов в камере сгорания остаётся при работе двигателя приблизительно постоянным. Некоторые ХРД (наименьшие по размерам) работают в импульсном режиме. По агрегатному состоянию топлива ХРД подразделяют на
жидкостные ракетные двигатели
(ЖРД),
твердотопливные ракетные двигатели
(РДТТ), РД на гибридном (комбинированном) топливе (РДГТ), желеобразном (тиксотропном), псевдосжиженном и газообразном (парогазовом) топливе.
Твердотопливные РД — родоначальники всех РД — применяются для запуска сигнальных, фейерверочных и боевых ракет (см. Реактивная артиллерия
), а также в космонавтике. Достоинства РДТТ — надёжность и простота эксплуатации, постоянная готовность к действию при длительном хранении; недостатки — меньшая эффективность по сравнению с лучшими ЖРД, трудность регулирования значения и направления реактивной тяги и, как правило, одноразовость использования. РДТТ могут развивать рекордную для ХРД тягу, их удельный импульс достигает 2,5—3 (
кн
×
сек
)/
кг.
Наиболее совершенные из современных РД — жидкостные РД. ЖРД, в особенности мощные, снабжены рядом сложных автоматических систем: запуска и остановки, регулирования тяги и расходования компонентов топлива, управления вектором тяги и др. Эффективность ЖРД в большой степени зависит от выбора компонентов топлива, прежде всего окислителя. Максимальная тяга единичных ЖРД приближается к 10 Мн,
удельный импульс достигает 4,5 (
кн
×
сек
)/
кг.
В РД на комбинированном топливе используются одновременно жидкие и твёрдые компоненты топлива. Обычно в камере сгорания РДГТ размещается твёрдое горючее, а жидкий окислитель подаётся из бака — подобным сочетанием достигается большая энергопроизводительность топлива; иногда в камере размещают твёрдый окислитель, а в баке — жидкое горючее. Особенность РДГТ — гетерогенное
горение
топлива. В подобных РД сочетаются достоинства и недостатки ЖРД и РДТТ; широкого применения они не получили. РД на желеобразном, псевдо-сжиженном и газообразном топливе находятся (1975) в стадии изучения.
У ядерных РД (находятся в стадии изучения) можно получить удельный импульс, значительно превышающий импульс, развиваемый ХРД. Теплота, выделяющаяся в реакторах, идёт на нагрев рабочего тела, т. е. у этих РД, в отличие от ХРД, источник энергии и рабочее тело разделены (рис.
, б)
.
Повышение удельного импульса в десятки и сотни раз достигается с помощью электрических РД, в которых в кинетическую энергию реактивной струи переходит электрическая энергия.
Теоретически РД предельных возможностей является фотонный (квантовый) РД, в котором реактивная струя образуется квантами излучения (см. Фотон
). Возможная область применения
фотонного ракетного двигателя —
межзвёздные полёты, но пока (1975) реальных путей создания подобных РД не найдено.
По характеру использования в ракетной и космической технике РД могут быть маршевыми (основные двигатели ракеты, разгоняющие её, например, до космической скорости), управляющими, тормозными, корректирующими, ориентационными, стабилизирующими и др. В авиации нашли применение РД в качестве основных и вспомогательных (стартовых, ускорительных) двигателей.
см. при статьях об отдельных видах ракетных двигателей.