0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок цилиндров двигателя курсовая работа

Ремонт блока цилиндров: как это делается

Блок цилиндров на первый взгляд может показаться деталью простой: чугунный корпус с цилиндрами — и только. Однако и здесь есть целый комплекс тонких нюансов: зеркало цилиндра, хон, плоскость плиты — а кривошипно-шатунный механизм добавляет к этому вкладыши, подшипники и кольца, где точность сборки измеряется десятыми долями миллиметра. Сегодня мы разберемся, кто смотрит в зеркало, куда вкладываются вкладыши и почему не стоит гнуть пальцы, а затем отдефектуем блок цилиндров дизельного двигателя Mitsubishi 4М41.

И так, мы подошли к финишной прямой. В нашем двигателе Mitsubishi 4М41, который проехал полмиллиона километров, после ремонта головки блока цилиндров и цепного привода ГРМ осталось разобраться с кривошипно-шатунным механизмом и блоком цилиндров. К слову, именно по состоянию блока цилиндров озвучивались самые пессимистичные прогнозы — ведь такой пробег не мог не сказаться на геометрических характеристиках. Однако после полной ревизии блока этот двигатель окончательно влюбил в себя нашего мастера.

Кривошипно-шатунный механизм и блок цилиндров

Блок цилиндров — это металлическая корпусная деталь, в которой заключены элементы того самого кривошипно-шатунного механизма, благодаря которому поступательное движение поршней превращается во вращательное движение коленчатого вала. Внутри блока имеются полости, которые при работе мотора заполняются охлаждающей жидкостью — водяная рубашка. Блоки изготавливаются из чугунного или из алюминиевого сплава: сам по себе блок должен быть массивным, потому что воспринимает довольно увесистые ударные нагрузки, передаваемые от поршней. Также не стоит забывать о нагреве, последствия которого необходимо минимизировать.

Сверху блок накрывается головкой блока (ГБЦ), снизу — поддоном картера. В самом блоке располагаются гильзы, внутри которых перемещаются поршни. Внутренняя поверхность гильзы, которая непосредственно контактирует с поршнем, называется зеркалом цилиндра. В нижней части блока имеются «постели» — ложементы, в которые укладывается коленчатый вал, накрываемый крышками. При накрытии постели крышкой образуется отверстие, называемое коренной опорой коленвала.

Важно, чтобы блок цилиндров был достаточно жестким, так как силы, возникающие в процессе работы, пытаются скрутить, изогнуть и разорвать блок — именно поэтому он долгие десятилетия и оставался чугунным. Тренд современности — более легкие блоки цилиндров из алюминиевого сплава, с которыми (как и с облегченными чугунными) применяют интегрированные крышки коренных опор, называемые рамкой лестничного типа.

Итак, получается следующее: в классическом исполнении (как у нас, например) каждая коренная шейка коленчатого вала накрывается отдельной крышкой коренной опоры (ее часто называют бугелем). В рамке лестничного типа все бугели объединены в одну конструкцию, похожую на лестницу — таким образом конструкторы добились значительного повышения жесткости блока цилиндров. Недостатком данного подхода можно назвать стоимость изготовления подобной детали.

Разобравшись с блоком, переходим к движущимся частям — и первыми будут поршни. Они изготавливаются из алюминиевого сплава и конструктивно имеют юбку, днище и бобышки. Юбка — это боковая часть поршня, бобышки — это приливы, в которых выполнено отверстие под поршневой палец, а днище — это плоскость, обращенная непосредственно в камеру сгорания и непосредственно воспринимающая все нагрузки в процессе сжигания топливовоздушной смеси. Интересно, что днище поршня может быть плоским, как стапель краснодеревщика, а может иметь настолько сложную форму, что понять с первого раза, что это поршень, будет тяжело.

Сложность формы поршня, если таковая имеется, тщательно просчитана в угоду улучшению смешивания топлива с воздухом (что часто встречается в бензиновых ДВС с непосредственным впрыском топлива). Если же двигатель работает на дизеле (как наш), в поршне может находиться камера сгорания, а сам он будет значительно массивней своего бензинового собрата.

Поршень устанавливается в цилиндр с определенным зазором (часто 0.2–0.3 мм), потому для его уплотнения предусмотрены поршневые кольца. На современных двигателях поршень опоясывают два компрессионных и одно маслосъемное кольцо. Соединяется поршень с коленчатым валом через шатун — соединительный элемент. Один его конец крепится к поршню через палец, который запрессовывается или просто вставляется и стопорится кольцами в поршне и головке шатуна. Второй конец — разборный: для закрепления на коленвале необходимо установить крышку шатуна и затянуть ее болты или гайки крепления.

И коленвал с блоком, и шатуны с коленвалом контактируют через подшипники скольжения, они же вкладыши. Для дополнительного охлаждения поршней внутри блока могут быть установлены распылители масла, направленные на поршни.

Рядная «шестерка» считается одним из самых уравновешенных двигателей (в плане колебаний). У нас же — рядная «четверка», причем внушительного объема, а потому в блоке цилиндров установлены два балансирных вала, суть работы которых сводится к уменьшению колебаний двигателя.

Что может поломаться

Одни из самых уязвимых деталей двигателя — поршневые кольца: из-за нагара они могут залипнуть в буквальном смысле слова. При этом могут лопнуть сами кольца, а могут и перемычки на поршне, между которыми они установлены. Может, наконец, износиться непосредственно выборка под кольцо в поршне.

С самими поршнями потенциальных проблем меньше, но ситуацию это не облегчает. Самое простое, что может произойти — банальный износ и отклонение от номинального диаметра, полный же «трэш» — это прогорание поршня. Кроме того, возможен износ поршневого пальца и отверстий под палец в бобышках поршня.

С шатуном все еще проще: здесь есть два нюанса, которые проверяют всегда, и два, которые часто игнорируют. Первые — износ втулки малой головки шатуна и износ вкладышей шатунного подшипника, а вторые — величина изгиба и кручения шатуна. Тем не менее, как показывает практика, шатун — один из самых редко заменяемых элементов в двигателе.

Самая распространенная проблема с коленчатым валом — износ рабочих поверхностей, второе по «популярности» место занимают случаи проворота вкладышей. Случается это, когда отсутствует достаточное количество масла в месте контакта, из-за чего коленвал срывает вкладыши подшипников и начинает «весело» вращаться вместе с ними. Это по-настоящему тяжелый случай: при определенном невезении ремонт может стоить замены блока.

Износ упорных колец коленчатого вала — тоже проблема довольно неприятная, хоть и незначительная на первый взгляд. Дело здесь в том, что не выявленный вовремя дефект в будущем может привести к заклиниванию двигателя — ведь на коленвал во время работы действуют силы и в продольном направлении тоже. Достаточно сместить вал на критическое расстояние — и поршни от перекоса просто заклинит. Стоит заметить, что поломка самого «колена» тоже возможна, хоть для этого и придется постараться.

В самом блоке конструктивно ломаться практически нечему — но это не означает, что с ним не бывает проблем, очень даже наоборот. Самые распространенные — износ цилиндров или коробление контактной поверхности блока с головкой из-за перегрева. Особо нерадивые автовладельцы, впрочем, могут сломать и сам блок цилиндров. Для этого нужно лишь выполнить парочку нехитрых операций: первая — залить в систему охлаждения обычную воду (можно дистиллированную), а вторая — оставить автомобиль на улице на ночь при минус 20°С.

Что измеряют при капремонте

Прежде всего, после разборки измеряют наружный диаметр поршней в строго определенной плоскости (поперек оси пальца) и на заданном расстоянии от поверхности днища поршня. Производитель может изготовлять поршни в нескольких размерах: номинальном и ремонтных — эти данные приведены в технической документации. Если поршень в «номинале» (как это оказалось у нас), проверяют биение шатуна и пальца. Профессионал может засечь неладное, что называется, на ощупь — неопытному же механику придется все-таки выпрессовать палец из поршня и шатуна. После выпрессовки необходимо измерить наружный диаметр пальца и внутренние диаметры втулки шатуна и отверстий в поршне, путем несложной математики вычислить зазор в данной сборке и принять финальное решение об утилизации или дальнейшем применении этого комплекта.

Читать еще:  Двигатель аире 80с2 характеристики

Вооружившись набором плоских щупов, специалисты-механики измеряют зазор между кольцом и выборкой в поршне: если он превышен — поршень отправляется под замену. Так как мы проводим капитальный ремонт, замена колец даже не обсуждается — это само собой разумеющийся факт.

Практически закончив с подвижными элементами, переходим к блоку цилиндров, для обмера которого необходим так называемый нутромер. Это приспособление, предназначенное для измерения внутреннего диаметра с высокой точностью, которая обеспечивается индикатором часового типа. Внутренний диаметр измеряют на трех уровнях и в двух взаимно перпендикулярных плоскостях: это необходимо для наиболее точного понимания величины и характера износа цилиндра. Характер износа в данном случае — величина бочкообразности и овальности цилиндра. Все дело в том, что нагрузка на цилиндр неравномерна, а, следовательно, неравномерен и его износ: ближе к центру величина износа будет расти, а затем снова уменьшаться. Из-за этого цилиндр в профильном разрезе слегка «округляется» и становится похожим на бочку. В свою очередь, поршень давит на цилиндр только в одном направлении, вырабатывая поверхность и превращая ее в овальную. Повторюсь, точность при работе с блоком должна быть предельной — никаких приблизительных размеров существовать просто не может: в технической документации обязательно есть цифры предельно допустимой бочкообразности и овальности цилиндров.

В конце концов, ревизии подвергается и коленчатый вал. У него измеряют диаметры коренных и шатунных шеек и, при необходимости, шлифуют до следующего ремонтного размера, если таковой предусмотрен. При помощи известного нам нутромера измеряются диаметры отверстий коренных опор (с установленными вкладышами, конечно). Затем, имея наружный диаметр шеек и внутренний диаметр опор, определяют масляный зазор: если он превышает допустимый, вкладыши отправляются под замену, а коленвал — на шлифовку. Кроме того, выше мы упоминали об осевом люфте коленвала — разумеется, при дефектовке измеряют и его, и если люфт завышен, заменяют упорные кольца коленвала.

Как ремонтируется блок

Если состояние цилиндров совсем не позволяет продолжить эксплуатацию блока, его отправляют на расточку цилиндров до следующего ремонтного размера. Бывает, что производитель не предоставляет такой роскоши, тогда блок «гильзуют» — восстанавливают гильзованием. Как несложно догадаться, в этом случае существующую гильзу значительно растачивают и впрессовывают в нее еще одну гильзу с внутренним диаметром номинального размера. Однако это решение — уже не очень надежное, и некоторые мастера предсказывают такому двигателю не более 50 тысяч километров потенциального пробега.

Если же блок растачивают, то, разумеется, и поршни с кольцами подбирают соответствующего размера. Шлифовка шеек коленчатого вала уменьшает их размер — а значит, и для них необходимо подобрать вкладыши следующего ремонтного размера. Работу облегчает то, что в техдокументации обычно присутствует размерная сетка подбора вкладышей.

Перед установкой поршней зеркало цилиндра подвергают хонингованию. Это процесс, который не изменяет размера цилиндра, но благодаря которому значительно уменьшается износ трущихся поверхностей. Хонингование — это нанесение небольших рисок на поверхность цилиндра с помощью специальных камней. Необходимо это для того, чтобы на поверхности цилиндра задерживалось моторное масло, увеличивая тем самым ресурс поршневой группы.

Ремонта блока цилиндров двигателя Mitsubishi 4М41

В нашем конкретном случае обошлось без сложных или интересных особенностей ремонта, так как замеры поршней, цилиндров и шеек коленчатого вала показали номинальные размеры.

Мнения наши разделились диаметрально: я немного расстроился, хозяин автомобиля — повеселел, а мастер… ему было все равно. Тем не менее, все мы очередной раз подивились стойкости данного мотора.

Перед разборкой блока и цилиндропоршневой группы мы сняли масляный поддон — и приступили к основной работе. Она свелась к извлечению поршней с шатунами из блока цилиндров. На всякий случай мы отметили номерами каждый поршень в соответствии с номером цилиндра.

Блок цилиндров двигателя. Виды блоков и их конструкции (Часть2).

В прошлой части данной статьи мы рассмотрели конструкции блоков цилиндров, повышающие прочность и жесткость блока, теперь настало время поговорить о самих цилиндрах. Как мы уже с вами говорили, большинство двигателей идут с цилиндрами, отлитыми с блоком как одно целое, но на практике могут встречаться цилиндры и в виде сменной гильзы, изготовленной из высококачественного чугуна.

Вокруг цилиндр окружен каналами рубашки охлаждения, для отвода излишек тепла от стенки цилиндра. Толщина стенки обычно составляет 5-7 мм, но бывают и толстостенные блоки с толщиной стенок 10-12 мм.

Для большего отвода тепла от цилиндра, встречаются блоки, у которых между цилиндрами выполнены протоки с охлаждающей жидкостью. Такая конструкция блока менее склонна к перегревам и вероятность прогара прокладки между цилиндрами у них сведена практически к нулю. Но в силу увеличения габаритных размеров и снижению запаса прочности такие блоки не получили большой популярности.

Зато более популярной стала их противоположная конструкция – без протока между цилиндрами. Иногда в таких двигателях толщина между стенками цилиндра может составлять 4,5 – 5 мм.

Для экономии на материалах применима следующая технология: сам блок цилиндров отливают из не дорогостоящего серого чугуна, в который уже запрессовываются тонкостенные гильзы (1,5 – 2,0 мм) из высококачественного износостойкого чугуна. Конструкция такого блока ограничена числом ремонтных размеров (увеличения диаметра цилиндра расточкой). Это удешевляет производство, но в тоже время чугунный блок остается тяжелым, поэтому более популярными стали конструкции алюминиевых блоков с запрессованными в них чугунными гильзами.

Сейчас алюминиевый блок цилиндров с запрессованными “сухими” гильзами устанавливают на многих марках автомобилей. Такая конструкция позволяет существенно снизить массу двигателя, сохраняя при этом тот же процесс ремонта (расточка и хонингование). На некоторых двигателях TOYOTA блок с “сухими” гильзами спекают из гранул, что увеличивает легирование алюминия кремнием, приблизив его тем самым к коэффициенту линейного расширения чугуна. Это обеспечивает стабильный зазор на коленчатом валу, так как алюминиевый сплав обладает большим тепловым расширением, в итоге мы можем получить нежелательный зазор 0.02 – 0.04. Бывает для исключения такого нежелательного эффекта, крышки выполняют из чугуна.

Некоторые фирмы на автомобилях представительского класса устанавливают двигатели с алюминиевым блоком имеющие специальное покрытие. Например, на V-образном 12 цилиндровом двигателе MERCEDESBENZ 600SL, при отливки блока двигателя из алюминия используют специальную технологию, которая позволяет сделать направленную кристаллизацию кремния у поверхности цилиндра. После травления у нее убирается весь оставшийся алюминий и при последующей обработке остается чистый кремний. Такие гильзы обладают исключительно высокой износостойкостью. У них есть лишь один минус это сложность изготовления и дорогой ремонт (требуются специальные технологии), недаром они устанавливаются на представительском классе. Еще они также очень критичны к плохой смазке.

Применение алюминиевых блоков цилиндров с различным покрытием рабочих поверхностей, дают стабильный зазор между рабочей парой поршень-цилиндр, в широком диапазоне температур. Рабочий зазор может изменяться от 0.02 до 0.04 мм при разнице температур от -20 град до 100. Такого никогда не достичь при использовании чугунного блока или чугунных гильз, так как в данном случае в том же диапазоне температур, он может колебаться от 0.01 до 0.1 мм. А ведь от температурного зазора напрямую зависит ресурс двигателя. При стабильном зазоре рабочей пары поршень-цилиндр исключено качание поршня в цилиндре при большем зазоре и прихватывания при малом.

Читать еще:  Что то болтается по защитой двигателя

Рассмотрим еще одну конструкцию блоков цилиндров, которая стала довольно популярной – это конструкция с применением “мокрых” чугунных гильз. В отличие от предыдущей рассмотренной конструкции с “сухой” гильзой (гильза запрессовывается в расточенный блок под размер гильзы), “мокрая” гильза вставляется в блок и упирается в него своей нижней частью в специальную расточку. Верхняя часть гильзы напрямую контактирует с охлаждающей жидкостью, отсюда она и получила название “мокрая” гильза.

Герметичность “мокрой” гильзы в нижней ее части достигается резиновыми уплотнительными кольцами, а ее верхняя часть, выступающая над плоскостью 0.03 – 0.07 мм сильной деформацией прокладки. Такая конструкция блока цилиндров большое развитие получила в основном во французском автостроении, ее широко применяют PEUGEOT, RENAULT, CITROEN.

Чтобы избежать разгерметизации стыка гильзы и головки блока при нагреве или охлаждении двигателя, резьбовые отверстия алюминиевых блоков опускают гораздо ниже верхней плоскости. Все это происходит из-за разных температурных коэффициентов разных материалов чугун – алюминий. Если применять традиционную технологию для чугунных блоков с “мокрыми” гильзами (рис. а) на алюминиевом блоке, то алюминий при нагреве дает большее усилие стягивания головки с блоком при ослаблении сжатия гильзы. При использовании длинных болтов или шпилек достигается меньшее усилие сжатия гильзы при нагреве (рис. б).

При нагреве двигателя происходит расширение деталей двигателя, чтобы немного уменьшить это расширение на некоторых двигателях VOLVO, RENAULT и других марках используют длинные анкерные болты. Они одновременно стягивают головку блока цилиндров и крышку коренных подшипников коленчатого вала. Такие болты выполняются из материала имеющего большую прочность и упругость и делаются они специально сравнительно небольшого диаметра.

Применение на двигателях блоков с “мокрыми” гильзами обладает не только положительными моментами (уменьшение веса, применение специальных износостойких материалов и др.) в нем присутствует и ряд недостатков, а именно:

  • очень сильно боятся перегревов двигателя. В результате перегрева существует большая вероятность деформации прокладки, с последующей разгерметизацией гильзы.
  • коррозия нижней поверхности гильзы так же может привести к разгерметизации ее нижней части.
  • при ремонте гильза не подлежит растачиванию и хонингованию, в ремонтный комплект к поршням сразу идут гильзы, что также слегка увеличивает стоимость ремонта.

Выше мы рассматривали конструкции блоков цилиндров в рядном исполнении, то есть все цилиндры расположены в ряд. Такой вид двигателей более распространен на всех марках автомобилей, помимо рядных конструкций вы можете встретить двигатели в оппозитном и V-образном исполнении.

При увеличении числа цилиндров и расположении их всех в один ряд, двигатель получился бы слишком длинным. Поэтому была придумана схема, позволяющая разнести цилиндры в два ряда, что сократило длину двигателя практически в два раза. Наклон цилиндров V-образного двигателя может составлять от 10 до 120 градусов. Расположение цилиндров напоминало латинскую букву V, отсюда они и получили название V-образные. Распространенные углы между цилиндрами составляют 45,60,90 градусов при количестве цилиндров 6,8, но также встречаются 10 и 12 цилиндровые двигатели.

Если увеличить угол у V-образного двигателя до 180 градусов, то мы получим оппозитный двигатель. Двигатели в оппозитном исполнении имеют разъемный картер, в котором плоскость разъема проходит через ось коленчатого вала. Оппозитные двигатели являются довольно не удобными и сложными в ремонте, но зато остаются самыми уравновешенными. Такая схема расположения довольно редко встречается на практике, наибольшее предпочтение ей отдают фирмы PORSCHE и SUBARU.

На моделях двигателей VOLKSWAGEN появились моторы с VR схемой расположения цилиндров. Они совмещают в себе V-образный и рядный двигатель. Двигатели с VR схемой имеют малый угол между цилиндрами 15-20 градусов и расположены в шахматном порядке. Главным их отличием от V-образных двигателей в том, что у них одна головка блока цилиндров.

В настоящее время имеют место применения и другие схемы расположения цилиндров, например, такие как W-образный.

В блоке цилиндров, как правило, так же располагаются масляные каналы, они обеспечивают беспрерывную подачу масла к коленвалу и головке блока цилиндров. Также необходимо обеспечить достаточным количеством смазки распредвал и гидрокомпенсаторы у V-образных двигателей с нижним расположением распределительного вала.

Правильное расположение масляных каналов в блоке цилиндров очень важно. Масляный канал не должен пострадать, например, при обрыве шатуна, так как это вызовет сложность в ремонте блока или сделает его совсем невозможным.

Исполнение масляных каналов может быть различным иногда главные масляные каналы выполнены сквозными отверстиями вдоль блока. Такие каналы по краям требуется закрыть заглушками.

Заглушки могут быть выполнены в разных вариациях, чаще всего встречаются резьбовые. Нередко мы можем встретить заглушку в роли, которой выступает стальной шарик, забитый в масляный канал при сборке двигателя. Также часто встречается, не только в масляной системе, но и в системе охлаждения заглушки в виде пробок.

Самым удобным при ремонте и в процессе обслуживания является первый вид заглушек с резьбой, так как иногда возникает необходимость снять заглушку и прочистить масляный канал. В случаях забитого шарика и запрессованной пробки этого сделать практически невозможно.

Цилиндры и хонингование

Рабочие цилиндры могут быть выполнены непосредственно как часть блока, а могут применяться гильзы. На поверхность цилиндров наносится специальный никелькремниевый сплав – никасил. Это очень прочный материал, защищающий кольца поршня от трения. Поверхность полируется до зеркала, чтобы свести к минимуму трение в условиях ограниченного поступления масла.


Хон цилиндра

Для улучшения смазки внутренней поверхности цилиндров применяют хонингование. Хон наносится специальным инструментом с головкой и абразивными брусками. В итоге на поверхности образуется выгравированная сетка. В ее желобках лучше удерживается масло. На внутренних стенках с хоном образуется масляная пленка, в результате чего значительно снижается трение и повышается ресурс деталей. Повторное хонингование, как правило, делается во время расточки двигателя или замены гильз.

Замена ЦПГ

Для того, чтобы заменить ЦПГ, сделайте следующее:
1) Закатите автомобиль на яму. Можно делать и лежа под автомобилем, но неудобно.
2) Отключите и уберите аккумулятор.
3) Слейте масло и охлаждающую жидкость.
4) Если есть возможность снять двигатель, снимите и положите на моторный стол. Если нет, придется все делать на автомобиле.
5) Отсоедините все навесные узлы, карбюратор, коллекторы, гидроусилитель руля, инжектор.
6) Снимите головку блока цилиндров.
7) Снимите масляный поддон двигателя.
8) Открутите гайки бугелей шатунов, и снимите бугеля.
9) Осторожно постукивая рукояткой молотка, выбейте все поршни.
10) Положите вынутые поршни в керосин. Если вместе с ЦПГ меняете и шатуны, эта операция не нужна.
11) Подберите по весу поршень, палец и шатун для каждого цилиндра.
12) Специальным съемником извлеките гильзы из блока цилиндров.

13) Запрессуйте новые гильзы. В зависимости от модели двигателя могут понадобиться дополнительные действия. За подробностями обратитесь к инструкции по ремонту вашего автомобиля.

14) Соберите поршни и шатуны, закрутив гайки бугелей. Снова взвесьте их. Если разница больше 3-5 грамм, придется стачивать лишнее, пока вес не придет в норму. После этого пометьте гайки и бугеля и снимите их.

15) Оденьте на поршни поршневые кольца. Старайтесь не сломать их. Кольца должны подходить по размеру. Зазор установленного в гильзу кольца должен быть в пределах 0,2-0,9 мм.
16) С помощью оправки вставьте поршни в блок цилиндров, соблюдая направление. Чтобы выемки на поршнях совпадали с клапанами.
17) Очистите постели шатунов и вкладыши. Смажьте вкладыши маслом, и установите их в постели.
18) Оденьте шатуны на коленчатый вал.
19) Очистите бугеля и вкладыши, смажьте вкладыши маслом, и установите в бугеля.
20) Оденьте бугеля каждый на свой шатун, и затяните.
21) Очистите привалочную поверхность блока цилиндров и головки блока цилиндров.
22) Поставьте новую прокладку головки блока цилиндров.
23) Установите и затяните головку блока цилиндров.
24) Установите и затяните прокладку и масляный поддон двигателя.
25) Поставьте и подключите все навесное оборудование.
26) Залейте охлаждающую жидкость и масло.
27) Поставьте аккумулятор.
28) Заведите двигатель и обкатайте на холостых оборотах в течение восьми — десяти часов.
29) Обкатайте автомобиль в движении.

Читать еще:  Двигатель 4g64 gdi как разобрать

Заменить ЦПГ сможет любой водитель. В этой статье описан порядок действий по замене, и некоторые секреты, которые позволят хорошо отремонтировать мотор.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Привалочная плоскость блока цилиндров двигателей ВАЗ может быть деформирована. Поэтому следует проверить ее с помощью линейки и набора щупов. Линейку необходимо устанавливать по диагоналям и осям плоскости. Если плоскость искривлена более чем на 0,1 мм, блок цилиндров нужно заменить.

Контролируемые размеры блока цилиндров двигателей ВАЗ.

Если было замечено попадание охлаждающей жидкости в картер, необходимо проверить герметичность блока цилиндров. Заглушив отверстия охлаждающей рубашки блока, нужно нагнетать в нее воду комнатной температуры под давлением 0,3 МПа (3 кгс/см2). В течение 2 минут не должно наблюдаться утечки воды из блока.

Если отмечалось попадание моторного масла в охлаждающую жидкость, следует проверить блок на наличие трещин в зонах масляных каналов. Это можно делать на автомобиле:

— Слить охлаждающую жидкость из системы охлаждения.
— Снять головку цилиндров.
— Заполнить рубашку охлаждения блока цилиндров водой.
— Подать сжатый воздух в вертикальный масляный канал блока цилиндров.

В случае появления пузырьков воздуха в воде, заполняющей рубашку охлаждения, блок цилиндров придется заменить.

Измерение диаметра цилиндров блока цилиндров двигателей ВАЗ.

Диаметр цилиндра блока цилиндров двигателей ВАЗ измеряют нутромером в четырех поясах как в продольном, так и в поперечном направлении. В зоне верхнего пояса цилиндры не изнашиваются. Разность размеров в верхнем и остальных поясах показывает величину износа цилиндров. При износе цилиндров до 0,15 мм их рекомендуют только хонинговать.

Измерение цилиндра нутромером.

Если величина износа более 0,15 мм, следует расточить цилиндры до ближайшего ремонтного размера поршней, увеличенного на 0,4 или 0,8 мм от номинала. Оставив припуск 0,03 мм на диаметр для хонингования.

Виды износа цилиндров блока цилиндров двигателей ВАЗ.

Встречаются цилиндры с овальным и бочкообразным износом. Мелкие частые риски на поверхности цилиндра по всей высоте движения первого компрессионного кольца означают, что скалывавшиеся частицы хромового покрытия царапали цилиндр. Соответственно, качество хромирования этого кольца низкое. Если зеркало цилиндра матовое, значит, это явно абразивный износ из-за пыли, попадавшей через негерметичный корпус воздушного фильтра.

Цилиндры блока цилиндров двигателей ВАЗ по диаметру разбиты на пять классов: А, В, С, D, Е, их размеры различаются на 0,01 мм. Класс цилиндра отмечен на нижней плоскости блока. Там же, а также на крышках коренных подшипников клеймится условный номер блока цилиндров, указывающий на принадлежность крышек к данному блоку.

Маркировка блока цилиндров двигателей ВАЗ.

После выяснения износа необходимо определить ремонтный размер, приобрести поршни нужного размера и провести обработку цилиндров под каждый из них индивидуально. Днища поршней следует пометить номерами цилиндров.

Расточка и хонингование блока цилиндров двигателей ВАЗ.

Если мастерская, куда вы намереваетесь отдать блок для расточки цилиндров, примет его в работу без поршней, заберите его скорее и ищите другую мастерскую. На блоке, принятом в ремонт, должен быть выбит номер квитанции мастерской. Это привязка на случай претензий по качеству.

Расточку обычно проводят твердосплавными резцами при частоте вращения шпинделя около 315 об/мин с подачей 0,05-0,08 мм/об. Припуск на чистовое растачивание — не более 0,15 мм. Получаемая шероховатость поверхности Ra — 1,25 мкм. До хонингования допускается небольшая чернота шириной до 10 мм и глубиной не более 0,03 мм. Оставляемый припуск на хонингование — 0,04-0,08 мм.

Окончательная обработка цилиндров — хонингование до достижения нужного размера и шероховатости Ra = 0,32 мкм, овальности и конусности в пределах 0,02 мм. Хонингуют цилиндр в два приема. Припуск на предварительную доводку составляет 0,03-0,08 мм. На окончательную — 0,01-0,03 мм. Частота вращения хона (хонинговальной головки) около 284 об/мин. Скорость возвратно-поступательного движения — 22 м/мин при предварительной обработке и 14 м/мин при окончательной.

Хонинговальная головка, абразивные бруски которой прижимаются пружинами к стенкам цилиндра, выполняет вращательное движение вокруг своей оси и возвратно-поступательное — вдоль оси. Хонингование происходит при непрерывной подаче охлаждающей жидкости. Чаще всего керосина или керосина с 10-20 % машинного масла. В результате обработки, помимо снятия металла для доводки диаметра до нужного размера, на зеркале цилиндра образуются риски глубиной до 0,05 мм под углом 50-60 градусов друг к другу.

Цилиндр после хонингования и проверка зазора.

В этих микроуглублениях задерживается масло, необходимое для смазки колец и поршней. Точность размеров обработанного цилиндра составляет 0,005-0,010 мм. Овальность и конусность — не более 0,03 мм.

После расточки и хонингования цилиндров замеряют зазоры между стенками цилиндра и соответствующим поршнем согласно меткам на днищах поршней. Вставив поршень в цилиндр на нужную глубину и ведя замер поперек блока. При замерах необходимо следить за температурой деталей, так как при обработке цилиндр нагревается.

Контролируемые размеры цилиндров и поршней по классам.

Зазоры в паре «поршень — цилиндр» выдерживаются с высокой точностью (допуск — 0,02 мм). Так как для нормальной смазки трущихся деталей необходимо наличие между ними заданного зазора. Толщина слоя горячего масла на вертикальной металлической поверхности равна примерно 0,02 мм, а зазор должен быть вдвое больше. Отсутствие зазора не дает возможности удержать масляную пленку, и последствия этого известны: заедание, задиры и заклинивание деталей.

Контрольные величины зазоров поршневой группы блока цилиндров двигателей ВАЗ.

Зазор контролируют по перемещению поршня в цилиндре. Чистый поршень в чистом цилиндре при одинаковой температуре поршня и цилиндра не должен падать. А лишь медленно опускаться под действием собственного веса или при легком нажатии пальцем.

По материалам книги «Ремонт двигателя своими руками».
Волгин В.В.

Устройство блока цилиндров

Внутри блока располагают сквозные отверстия с отшлифованными стенками, внутри которых перемещаются поршни. В нижней части имеется специальная постель, на которой, посредством подшипников, закрепляются концы коленчатого вала. Там же находится поверхность, предназначенная для крепления поддона, в сборе с которым он представляет собой картер для смазывающего вещества.

Верхняя часть блока имеет идеально ровную поверхность, к которой с помощью болтов крепится головка блока цилиндров. То, что сейчас все привыкли называть цилиндрами, образуются из головки и самого блока. Сбоку же, блок имеет специальные кронштейны для крепления к кузову автомобиля.

Внутри цилиндров могут располагаться специальные гильзы, которые запрессовываются внутрь с использованием специальных механизмов. Гильзы нашли широкое применение в блоках цилиндров, изготовленные из алюминия.

Все детали, которые крепятся к двигателю, имеют специальные уплотнительные прокладки, которые не допускают утечку масла через места соединений. При ремонте ГБЦ, рекомендуется все эти прокладки заменить.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector