0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Биполярный шаговый двигатель схема запуска

По принципу работы они ближе к двигателям постоянного тока. Конструкция электродвигателей постоянно совершенствуется для уменьшения трудозатрат при изготовлении, повышения КПД и увеличения количество оборотов. У них по сравнению с двигателем постоянного тока нет щёток, коллектора, а обмотки с меньшим количеством витков.

Среди первых двигателей был создан миниатюрный двигатель для ручных часов и назван в честь французского инженера Мариус Лавета. Статор расцеплен на краях или в районе ротора имеет небольшие сужения. Ротор диаметром 1.5 мм, магнитный на основе кобальта. Одна обмотка в один ряд питание 1.5 вольта. Угол поворота 90 градусов.

Моторчик лавета применяется также и в медицине для перекачки различной жидкости, а также часто используется в миксерах и блендерах.

В последнее время ведутся разработки пьезоэлектрических двигателей с использованием пьезомагнитного эффекта и применяя в конструкции ферромагнитные материалы. Совершенствуются линейные электродвигатели, у которых вал не вращается, а совершает линейные движения. Для оборудования точной механики российские производители выпускают двигатели с маркировкой серии:

  1. ДШ.
  2. ДШР.
  3. ДШГ.
  4. ДШЛ.
  5. ШД.
  6. ДШЭ

В производстве их участвуют такие предприятия, как НПО «АТОМ», ZETEK, компания Электропривод, Stepmotor, Вексон, НПО РИФ, Саратовский эл. механический, корпорация ВНИИЭМ, ЗАО Уралэлектромаш, АРК «Энергосервис». Производством ШД FL 203, FL 28, FL 57, 35 HS, 57 HS, 17 HD занимаются зарубежные фирмы: Fulling motor, Autonics, Motionking YUHA motor, Jlangsu, Phytron и другие. Ассортимент выпускаемых ШД разнообразный: по типоразмерам, мощности, со встроенным редуктором и платой управления.

Что такое шаговый двигатель?

Прежде чем перейти к статье, давайте сразу договоримся, что статья не направлена на специалистов, а её цель – донести любознательным любителям техники и технологий о таком устройстве, как шаговый двигатель и об основах работы с ними. Поэтому умников и критиков, жаждущих поговорить о великом многообразии управляемого и регулируемого электропривода, прошу идти общаться на тематические ресурсы по ЧПУ-станкам и 3D-принтерам.

Итак, для начала сформулируем определение. Согласно Википедии: «Шаговый электродвигатель — синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора».

Формулировка достаточно понятна, но её последнее предложение может вызвать некоторое недопонимание. Поэтому я предлагаю провести небольшое сравнение.

Всем известно что ротор «обычного» электродвигателя, будь то асинхронного, синхронного, коллекторного или любого другого будет вращаться до тех пор, пока на него подают напряжение питания, и после отключения питания он будет вращаться еще какое-то время по инерции, если же не используются какие-либо средства для его торможения.

Ротор такого двигателя вращается просто вокруг своей оси без каких-либо ограничений, на 360 градусов, и остановится он в любом месте. Зафиксировать его положением можно только механически (тормозом). По этой причине не получится добиться точного позиционирования исполнительных механизмов, что требуется в робототехнике, ЧПУ-станках и другом автоматизированном оборудовании.

Но шаговые двигатели разработаны для применения в механизмах, где детали поворачиваются точно на требуемый угол.

В приведенном выше определении было сказано «…вызывает дискретные угловые перемещения (шаги) ротора…» — это значит, что ротор шагового двигателя не вращается в обычном понимании, а поворачивается на какой-то определенный, «дискретный» угол. Этот угол называется шагом, отсюда и название «шаговый двигатель». Мне нравится еще одно название этих устройств — «двигатель с конечным числом положений ротора».

Питание такого двигателя невозможно без системы управления, или как его еще называют, драйвера — он подаёт импульсы в нужные обмотки, чтобы повернуть ротор на нужный угол. Это наглядно иллюстрирует приведенная ниже анимация.

Кроме того, что можно поворачивать двигатель на определенный угол и фиксировать его в этом положении, делать это всё можно без схемы обратной связи (датчиков положения и прочего).

Рассматривать типы шаговых двигателей в пределах этой статьи мы не будем, лишь кратко перечислим, какими они бывают. По конструкции:

  1. Реактивные.
  2. С постоянными магнитами.
  3. Гибридные.

По способу питания:

  1. Униполярные (однополярные — ток пропускают через обмотки только в одну сторону).
  2. Биполярные (ток пропускают через обмотки в обе стороны). Здесь драйвер должен подавать напряжение различной полярности, что несколько усложняет схемотехнику. При тех же размерах развивают б О льшую мощность по сравнению с униполярными.

В униполярном двигателе зачастую 5 проводов — 1 общий, от середины каждой из двух обмоток, и 4 от концов обмоток. Иногда говорят «4 обмотки» – это также правильно, поскольку фактически мы получаем 4 обмотки соединенных в общей точки.

Униполярный шаговый двигатель

Также ШД могут отличаться и по количеству проводов, это зависит от того, как соединены обмотки и какое питание предполагается, некоторые варианты вы видите в таблице ниже.

Варианты схем соединения обмоток в шаговых двигателях

Управление шаговым двигателем

Различают два способа управления шаговым двигателем:

  1. Полношаговое. Одновременно включается только пара обмоток (без перекрытия с другими). Достигается максимальный момент на валу, но точность установления угла меньше, чем в других способах.
  2. Полушаговое. В этом случае увеличивается количество шагов, соответственно повышается точность установки положения вала. На каждый первый шаг включается одна обмотка, на каждый второй шагами (полушаг) – пара обмоток. Но когда включена одна обмотка момент на валу снижается вдвое.
Читать еще:  Что такое дросельный двигатель

На анимациях ниже наглядно продемонстрировано

В некоторых источниках отдельно обозначают микрошаговое управление. Используется, когда необходимо максимальное количество шагов и точность управления. По способу управления оно похоже на полушаговый режим, между шагами включаются две обмотки, а отличие в том, что токи в них распределяются не равномерно. Главный недостаток такого подхода — усложняется коммутация (система управления).

Конструкция и принцип работы

Шаговый двигатель состоит из статора и вращающегося ротора. Сердечник статора выполнен в виде набора листов электротехнической стали (штампованных). Это уменьшает вихревые токи и соответственно нагрев. Статор по окружности разбит на 4.6.8 продольных пазов. Применяется и больше. На выступах между пазами располагаются обмотки в виде катушек. Количество пазов соответствует количеству полюсов двигателя. Чем больше полюсов, тем меньше угол поворота ротора, то есть шаг.

Ротор состоит из одного или двух постоянных магнитов, с торцов, металлические пластины которого закреплены с зубьями. При этом плюса S и N постоянного магнита разбиваются на n полюсов, что соответствует количеству зубьев. Это также влияет на величину шага вращения. По конструкции ШД выпускаются трёх типов в зависимости от конструкции ротора:

  • реактивный;
  • ротор из постоянного магнита;
  • гибридный.

Реактивный — ротор выполнен из ферромагнитного материала с продольными пазами, полюсами. Он используется редко, только для выполнения простых задач. В основном из-за того, что у него нет стопорящего момента. Гибридный — ротор изготовлен из двух половинок ферромагнитного материала, с продольными пазами и между ними расположен постоянный магнит. Пазы половинок относительно друг друга, сдвинуты на небольшой угол, для понижения шага. Они чаще всего применяются.

При подаче импульсного напряжения на обмотку статора образуется электромагнитное поле. Взаимодействуя, с ближайшим полюсом постоянного магнита создаётся крутящий момент. Вал двигателя поворачивается на определённый угол. Угол поворота в основном зависит от количества полюсов ротора.

Такой двигатель и будет называться шаговым. Благодаря небольшим размерам ШД серии Em 422 применяется в матричных принтерах.

#21. Подключаем к Arduino Шаговый двигатель 28BYJ-48 на драйвере ULN2003

Сегодня в уроке подключим шаговый двигатель 28BYJ-48 к Arduino и научимся вращать вал двигателя в разные стороны и изменять скорость вращения с помощью потенциометра и энкодера KY-040.

Кратко, что такое шаговый двигатель (ШД) — это двигатель, который способен осуществлять вращение на 1 шаг. Шаг — это угол, который обусловлен устройством каждого конкретного шагового двигателя.

Характеристики шагового двигателя 28BYJ-48:

Размера шагового двигателя 28BYJ-48. Необходимы при проектировании деталей для 3D печати.

Вот так выглядит схема шагового двигателя 28BYJ-48

Подавая сигналы в определённом порядке на выводы двигателя, двигатель можно вращать по часовой стрелке.

Для шагового режима.

Для полушагового режима.

Прямое подключение шагового двигателя 28BYJ-48 к Arduino.

В связи с тем, что двигатель 28BYJ-48 работает от 5в и при небольших токах, его можно подключить на прямую к Arduino.

Схема подключения к Arduino UNO будет следующая.

Для вращения ШД достаточно подавать сигналы по схеме, которую мы рассмотрели выше.

Для этого можно сделать массив подачи сигнала на пины микроконтроллера.

И в цикле выполнять каждую строчку массива. Но есть решение с более компактным кодом. Нашел я данный пример на канале Дмитрия Осипова. За что ему отельное спасибо!

Код для вращения в одну и в другую сторону будет вот таким.

ВНИМАНИЕ! Материалы для скачивания находятся внизу статьи!

Пример подключения шагового двигателя 28BYJ-48 (5V)с использованием драйвер ULN2003.

Также у Дмитрия Осипова есть код для изменения скорости вращения с помощью потенциометра. Я его немного доработал, сделал обработку нажатия кнопки без задержки в 500 мс. Сейчас двигатель стал вращаться в обратную сторону без видимой задержки.

Для подключения буду использовать модуль SBT0811 на драйвере ULN2003.

Драйвер устроен вот таким образом.

Соответственно, наш код будет работать и с данным драйвером.

Подключим все по схеме и загрузим код в Arduino NANO.

Схема подключения для Arduino UNO будет аналогичной.

Как видим, двигатель без проблем вращается по часовой стрелке и против часовой, при нажатии на кнопку вращается в противоположном направлении. При вращении потенциометра в одну сторону — скорость уменьшается, при вращении в противоположном направлении скорость увеличивается.

ВНИМАНИЕ! Материалы для скачивания находятся внизу статьи!

Пример управления шаговым двигателем 28BYJ-48 с помощью Энкодера.

Для уменьшения количества элементов в схеме решил заменить потенциометр и тактовую кнопку на энкодер вращения KY-040. Как подключить энкодер вращения к Arduino рассказывал в предыдущем уроке.

Подключаем шаговый двигатель 28BYJ-48 и энкодер к Arduino по схеме.

Читать еще:  Двигатель aee холостой ход

Проводим небольшую доработку кода и получим вот такой результат.

Если нажать на энкодер, меняется направление вращения. А при вращении энкодера по часовой стрелке — скорость увеличивается. Если вращать против часовой стрелки — скорость снижается.

ВНИМАНИЕ! Материалы для скачивания находятся внизу статьи!

Вы также можете без проблем воспользоваться примером из стандартной библиотеки Stepper, которая позволит сделать тоже самое и при меньшем объёме кода. Но библиотека не даст вам понять, как это все устроено.

А вот сам пример вращения в одну сторону, а затем в другую с использованием библиотеки Stepper.

На основе данного примера можно реализовать управление не только одним шаговым двигателем, а несколькими. Причем, каждый двигатель будет выполнять свои действия не зависимо от других. В планах сделать пару проектов с использованием данного шагового двигателя.

Пишите в комментариях, что бы вы хотели сделать на шаговых двигателях, и какие примеры вас интересуют. Чем больше будет откликов, тем чаше будут выходить проекты и уроки на сайте.

Не забывайте подписываться на канал Youtube и вступайте в группы в Вконтакте и Facebook.

Всем Пока-Пока.

И до встречи в следующем уроке

Понравилась статья? Поделитесь ею с друзьями:

Что такое шаговый двигатель. Блок управления шаговым двигателем на таймере NE555 (КР1006ВИ1).

Что такое шаговый двигатель.
Блок управления шаговым двигателем на таймере NE555 (КР1006ВИ1).

Шаговый двигатель_Блок управления_схемы

Принцип работы шагового двигателя заключается в повороте его вала на определенный угол при поступлении чередующихся импульсов, поступающих на соответствующие обмотки. Управляется данный двигатель с помощью электронной схемы – драйвера, ее еще называют контроллером шагового двигателя.

Плюсами шагового двигателя являются точность позиционирования вала, то есть точное его перемещение на определенный угол, это зависит от количества поступивших на обмотки импульсов, данный двигатель более надежен в связи с отсутствием щеточного механизма (его ресурс ограничивается сроком службы подшипников), с помощью такого двигателя можно добиться сверхнизкой частоты вращения вала, не применяя при этом редукторных механизмов, двигатели такого типа обладают широчайшим диапазоном скорости вращения, это зависит от количества приходящих на обмотки импульсов.

Разновидности шаговых двигателей:

В последнее время в основном промышленность выпускает гибридные шаговые двигатели, которые различаются по количеству и конфигурации обмоток.

● Биполярные ШД — имеют две обмотки, четыре вывода;
● Униполярные ШД — имеют две обмотки, шесть выводов;
● Четырехобмоточные ШД — имеют четыре обмотки, восемь выводов.

Чтобы с обмотками было понятнее – смотрите следующее изображение:

У последнего варианта, если соединить выводы “А-штрих” с “В” , и “С-штрих” с “D”, получите биполярный шаговый двигатель.

Пример внутреннего строения обмоток шагового двигателя:

К недостаткам шагового двигателя можно отнести подверженность его резонансу, низкий уровень удельной мощности на валу, низкий момент на высокой скорости вращения, и не снижение потребляемой энергии при отсутствии нагрузки на валу.

Цель данной статьи не рассматривать отдельные нюансы шаговых двигателей, мы изложили лишь общие понятия его устройства и принципа работы. Таким образом мы вплотную подошли к устройству блока управления ШД.

В сети можно найти множество схемных решений контроллеров ШД, основанных на применении программируемых микроконтроллеров, ну а мы сейчас рассмотрим принципиальную схему управления однополярным ШД, реализованную на микросхеме-таймере NE555, отечественным аналогом которой является КР1006ВИ1. На этой микросхеме собран тактовый генератор прямоугольных импульсов. Эти импульсы поступают на устройство (микросхемы D2 и D3), которое обеспечивает подачу импульсов управления на соответствующие обмотки двигателя в нужном порядке для того, чтобы вал нашего двигателя начал вращаться. Управляющие импульсы на обмотки поступают через ключи VT1…VT4. Скорость вращения вала ШД изменяется вращением ручки переменного резистора R1. Принципиальная схема блока управления изображена на рисунке ниже:

Зарубежные микросхемы и их отечественные аналоги: CD4070 — К561ЛП14 ; CD4027 — К561ТВ1.

Даташит микросхемы NE555 можно скачать по прямой ссылке с нашего сайта, которая появится после клика по любой строке рекламного блока ниже, кроме строки “Оплаченная реклама”. Размер файла – 93,5 KB.

В качестве дополнения к статье приведем пример еще одной не сложной схемы управления ШД , которые применялись в дисководах 5,25″.

Схема собрана на следующих элементах:

— DD1 — К561ЛА7;
— DD2 — К561ИЕ14;
— DD3 — К555ИД7;
— DD4, DD5 — К155ЛИ5.

Печатная плата выглядит следующим образом:

Печатная плата блока управления ШД_вид со стороны дорожек

Печатная плата блока управления ШД_установка элементов на плате

Более подробное описание вы можете найти в журнале “Радиохобби” в первом номере 2001 года, страница 44, статья “Система дистанционного управления для High-End УМЗЧ”, а вышеприведенная схема является частью схемы из этого журнала.

И последний довесок к статье без описания, может быть кому и пригодится:

Элементы указаны на схеме, переключатель S1 – реверс вращения.

Как подобрать шаговый двигатель для станка ЧПУ. ШД из принтера.

Любая разработка начинается с выбора компонентов. При разработке ЧПУ станка очень важно правильно подобрать шаговые двигателя . Если у вас есть деньги на покупку новых двигателей, в таком случае нужно определить рабочее напряжения и мощность двигателя. Я купил себе для второго ЧПУ станка шаговые двигателя вот такие: Nema17 1.7 А.

Читать еще:  2114 двигатель чихает не заводится

Если у вас нет достаточно денег или вы просто пробуете свои силы в данной сфере. То вы скорее всего будите использовать двигателя из принтеров . Это самый недорогой вариант. Но тут Вы столкнетесь с рядом проблем. У двигателя может быть 4, 5, 6, 8 — проводов для подключения. Как их подключить к драйверам L298n и СNC shield.

Давайте разберемся по порядку. Какие шаговые двигателя бывают. Если вы видите четное количество выводов это биполярный шаговый двигатель . Расположение обмотки для данного двигателя вот такое.

Если у двигателя 5 выводов, это униполярный шаговый двигатель . Вот так выгладит его схема.

Наши драйвера рассчитаны на двигателя с 4 выводами . Как быть? Как их подключить?

Биполярные ШД с 6-ю выводами подключаются к драйверу двумя способами:

В данном случае ШД имеет момент в 1.4 раза больше. Момент более стабилен на низких частотах.

При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток — 1.4 А, то есть в 1.4 раза меньше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность ШД — I*2 * R

При последовательном включении обмоток потребляемая мощность становится Iпосл.*2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому I*2 * R = Iпосл.*2 * 2* R, откуда

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Во втором случае момент более стабилен на высоких частотах. Параметры ШД при таком подключении соответствуют заявленным в datasheet, (момент, ток), момент более стабилен на высоких частотах .

Униполярный шаговый двигатель можно переделать.

Для этого нужно разобрать шаговый двигатель и перерезать провод соединяющий центр обмоток. И при подключении общий провод подключать ни куда не нужно.

В итоге у нас получается биполярный двигатель с 4 выводами.

Шаговые двигателя с 8-ю выводами можно подключить тремя способами.

Подключение А — шаговик работает с характеристиками, заявленными в описании (момент, ток), момент более стабилен на высоких частотах.

Подключение B – момент ↑1.4 раза, момент более стабилен на низких частотах (относительно А).

Подключение C – момент ↑1.96 раза, момент более стабилен на высоких частотах (относительно А).

Вот мы и решили проблему подключения шаговых двигателей. Но не все двигателя у нас заработают. Нужно еще определить рабочее напряжение двигателей. Самый правильный способ это найти datasheet. Так все параметры есть. Но не ко все двигателя из принтера можно найти datasheet. В таких случаях я пользуюсь вот такой таблицой .

Сопротивление обмотки, Ом

Рабочее напряжение, В

Не знаю на сколько данная таблица верная но у меня все сходиться и работает как надо.

Двигателя я выбираю чтобы рабочее напряжение было меньше или равно напряжению источника питания. Для двигателей рассчитанных на меньшее напряжения необходимо настроить ток ниже.

Настраивать СNC shield будем в следующей статье. Не пропустите!

Подписывайтесь на мой канал на Youtube и вступайте в группы в Вконтакте и Facebook.

Спасибо за внимание!

Понравилась статья? Поделитесь ею с друзьями:

Второй пример использования

В качестве еще одного примера использования рассмотрим управление дроблением шага и направлением вращения шагового двигателя с платы Arduino. для этого нам потребуются следующие компоненты:

  • Плата Arduino Uno -1;
  • Драйвер A4988 — 1;
  • Шаговый двигатель NEMA17 — 1;
  • Потенциометр 10 кОм — 1;
  • Кнопка — 1;
  • Переключатель 2-х позиционный — 1;
  • Резистор 10 кОм – 3;
  • Провода MF — 20

Соединение деталей по схеме на рисунке ниже

Схема подключения для управления скоростью и направлением движения

Приступим к написанию скетча. Нажатие на кнопку включает/выключает двигатель, подавая сигнал LOW/HIGH на вход ENABLE драйвера A4988. С помощью переключателя выбираем направление вращения двигателя (сигнал с переключателя подается напрямую на вход DIR драйвера A4988). C помощью потенциометра мы выбираем один из режимов микрошага. Содержимое скетча представлено в примере кода №2. двигателя с постоянной скоростью на один оборот в одну сторону, затем в другую, и далее в цикле.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector