1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель схема резонанса

Три способа управления однофазными асинхронными двигателями

Каждый день инженеры проектируют системы, в которых используются асинхронные двигатели с однофазным питанием. В свою очередь, управление скоростью однофазных двигателей желательно в большинстве применений, так как это не только обеспечивает требуемую скорость, но и уменьшает потребление электроэнергии, и снижает уровень акустического шума.

Большинство серийно выпускаемых однофазных двигателей не реверсивные, т.е. они разработаны, чтобы вращаться только в одном направлении. Изменить направление их вращения можно только с помощью дополнительных средств: добавочной обмотки, внешних реле и переключателей, механического редуктора и т.д. Так же, если позволяет конструкция двигателя, реверсировать его можно с помощью преобразователей для регулировки скорости.

Существует множество разновидностей асинхронных двигателей с однофазным питанием. Конструкция и принцип их действия подробно описаны в литературе по электромеханике. Наиболее распространенным типом является двигатель с двумя статорными обмотками, одна из которых имеет в своей цепи постоянно-включенный рабочий конденсатор, который обеспечивает сдвиг тока в обмотках на 90 электрических градусов для образования вращающегося магнитного поля. Такой двигатель называется конденсаторным. О нем и пойдет речь в данной статье.

Основным способом плавной регулировки скорости конденсаторного однофазного двигателя является частотный метод, реализуемый с помощью трехфазных или однофазных ШИМ-инверторов (преобразователей частоты), а также метод фазовой регулировки напряжения с помощью тиристорных регуляторов мощности. Рассмотрим эти методы подробнее.

Вариант 1. V/F управление с помощью однофазного ШИМ-инвертора

На выходе инвертора, состоящего из четырех IGBT-транзисторов (рис.1), формируется однофазное напряжение с переменной частотой и среднеквадратичным значением с линейной зависимостью V/F (вольт-частотная характеристика). За счет конденсатора в обмотке двигателя получается поле, близкое к круговому. Данный способ управления реализуется с помощью специализированных преобразователей частоты, которые разработаны исключительно для управления однофазными двигателями. В них, как правило реализованы специальные алгоритмы, управления двигателем, обеспечивающие устойчивый пуск и стабильную работу в заявленном диапазоне частот.

Регулировать частоту можно, как вниз, так и вверх от номинальной, но в отличие от частотно-регулируемых трехфазных приводов, диапазон регулирования однофазного двигателя меньше. Оно, как правило, не превышает 1:10, за счет того, что емкостное сопротивление напрямую зависит от частоты.

К основным достоинствам данного метода управления можно отнести: 1) простоту ввода в эксплуатацию, т.к. не требуется конструктивных изменений двигателя; 2) гарантированно надежную и устойчивую работу, так как частотный преобразователь специально разработан для таких двигателей и в нем учтены все особенности их эксплуатации; 3) хорошие характеристики управления и возможности, присущие большинству преобразователей частоты (аналоговые и дискретные входы/выходы, ПИД-регулятор, предустановленные скорости, коммуникационные интерфейсы, защитные функции, и т.д.).

К недостаткам относится: 1) только однонаправленное вращение (невозможность без внешних коммутирующих устройств реверсировать двигатель); 2) достаточно высокая стоимость частотных преобразователей для однофазных двигателей, так как в них используются IGBT-модули со значительным запасом по току (например, в однофазном частотнике мощностью 1.1кВт используется IGBT-модуль такой же как в трехфазном на 2.2кВт) и из-за ограниченности предложения на рынке.

Вариант 2. V/F управление с помощью трехфазного ШИМ-инвертора

В данном случае используется стандартный преобразователь частоты с мостовой схемой IGBT-транзисторов (рис.2), формируемый на выходе трехфазное напряжение с фазовым сдвигом на 120 градусов. Обе обмотки однофазного двигателя и их средняя точка подключаются ко трем выходным фазам инвертора. Конденсатор, при этом, из схемы должен быть исключен. Так как обмотки геометрически сдвинуты на 90 градусов , а напряжение, прикладываемое к ним – на 120 электрических градусов, то полученное поле не будет круговым, и как следствие, момент будет пульсирующим. Причем среднее его значение за период будет меньше (рис.2), чем в случае питания от напряжений со сдвигом 90 гадусов.

При схеме подключения на рис.2 действующее напряжение на главной обмотке (Vгл) будет равно разности напряжений фаз A и C, а напряжение на дополнительной обмотке (Vдоп) = Vb-Vc. Изменяя порядок коммутации IGBT-транзисторов, можно легко изменять чередование напряжение на обмотках, а следовательно и направление вращения двигателя (рис.3) без каких-либо дополнительных аппаратных средств.

Здесь стоит отметить, что не любой преобразователь частоты подойдет для управления однофазным двигателем, так как токи в фазах будут не симметричны, и в случае наличия защиты от асимметрии выходных фаз, работа преобразователя будет блокироваться. Как впрочем, и не любой конденсаторный двигатель подойдет для данного способа, так как у некоторых типов двигателей весьма затруднительно или невозможно убрать емкость из дополнительной обмотки, и дополнительная обмотка как правило выполнена более тонким проводом, что при отсутствии конденсатора может привести к её перегреву и межвитковому замыканию.

Иногда на свой страх и риск используют подключение однофазного двигателя с конденсатором к трехфазному инвертору, что большинством производителей частотных преобразователей запрещено. В этом случае надо выбирать частотник со значительным запасом по току по отношению к двигателю, в частотнике не должно быть защиты от обрыва/перекоса выходных фаз, и надо помнить, что при определенной частоте может возникнуть электрический резонанс в контуре конденсатор-обмотка двигателя, что приведет к его повреждению.

Читать еще:  Что такое фси двигатель и тси

Итак, достоинствами метода являются: 1) доступность на рынке и достаточно низкая цена преобразователей частоты с трехфазным выходом; 2) возможность реверсивной работы; 3) хороший диапазон регулирования скорости и возможности, присущие большинству преобразователей частоты (аналоговые и дискретные входы/выходы, ПИД-регулятор, предустановленные скорости, коммуникационные интерфейсы, защитные функции, и т.д.).

Недостатки метода: 1) пониженный и пульсирующий момент двигателя, повышенный его нагрев; 2) не все преобразователи частоты и конденсаторные двигатели годятся для данного метода, требуется предварительный анализ характеристик преобразователя и конструкции двигателя. К тому же, большинство производителей частотных преобразователей в своих инструкциях запрещают подключение однофазных двигателей, и в случае поломки могут снять с изделия свои гарантийные обязательства.

Вариант 3. Фазовая регулировка напряжения с помощью тиристорного регулятора

Отсутствие до недавнего времени доступного и качественного преобразователя частоты для однофазных двигателей приводило к поиску других решений, одно из которых — изменение напряжения статора при неизменной его частоте.

На выходе тиристорного регулятора, состоящего из двух, включенных встречно-параллельно тиристоров (рис.4), формируется однофазное напряжение с постоянной частотой и регулируемым среднеквадратичным значением за счет изменения угла (альфа) открывания тиристоров.

Критический момент при таком регулировании будет снижаться пропорционально напряжению, критическое скольжение в останется неизменным.

Проведём оценку метода.
1) Регулирование однозонное – только вниз от основной скорости.
2) Диапазон регулирования в разомкнутом контуре, примерно, 2:1; стабильность скорости удовлетворительная; плавность высокая.
3) Допустимая нагрузка резко снижается с уменьшением скорости.
4) Рассмотренный способ регулирования неэффективен для использования в продолжительном режиме. Даже для самой благоприятной нагрузке — вентиляторной необходимо двух-трехкратное завышение установленной мощности двигателя, интенсивный внешний обдув, так как, допустим, если двигатель вращается 750 об/мин (когда синхронная частота 1500) — скольжение 0,5, и 0,5 мощности идет в нагрузку, а 0,5 — греет ротор (не считая других потерь).
5) Тиристорный регулятор — простое устройство в 3-4 раза более дешевое, чем преобразователь частоты, и именно эта особенность системы регулировки скорости напряжением приводила в ряде случаев к её неоправданному применению.

Заключение

Все три способа имеют право на существование, только выбор одного из них нужно делать исходя из конкретной прикладной задачи.

Безусловно, наиболее универсальным и наименее трудоемким на стадии проектирования является первый метод – регулирование с помощью преобразователя частоты с однофазным выходом. Этот способ годится для большинства применений и помимо конденсаторных двигателей его можно использовать и для управления однофазными двигателями с экранированными полюсами.

Второй способ – регулирование с помощью преобразователя частоты с трехфазным выходом, — требует предварительного изучения, как преобразователя, так и двигателя на предмет возможности совместной работы. И рекомендуется всегда выбирать преобразователь с существенным запасом мощности по отношению к двигателю. Этот метод оптимален в реверсивных приложениях.

Третий способ – регулирование скорости изменением напряжения, — может в ряде случаев использоваться для кратковременного снижения скорости маломощных вентиляторов и насосов, и весьма полезен и эффективен для снижения пусковых токов, для экономии энергии при недогрузках. Этот метод является самым бюджетным, но как подчеркивалось ранее, тиристорные регуляторы не должны применяться для регулирования скорости сколько-нибудь мощных двигателей, приводящих во вращение машины, работающие в продолжительном режиме.

Что такое Резонанс?

Большинство сооружений и машин совершают собственные колебания, поэтому периодические внешние воздействия на них могут вызвать резонанс. Резонансом часто называют колебания с собственной частотой или на критической частоте. Резонанс — это явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к резонансным частотам, определяемым свойствами системы. Увеличение амплитуды колебаний — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы (ротор-опора). Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.

Параметры системы, такие, как низкая жесткость и/или слабое демпфирование, на резонансной частоте воздействуя на роторную машину, могут привести к возникновению резонанса. Резонанс не обязательно приводит к поломке машины или ее узла, за исключением, если дефекты в машине вызывают вибрацию или вблизи установленная машина, «наводит» вибрацию на той же частоте, что и собственные частоты.

Резонанс не создает вибрации, он только усиливает их. Резонанс это не дефект, а свойство механической системы. Поэтому, резонанс не вызывает проблем, если какие-либо колебания не возбуждают его.

Это сопоставимо с колебаниями колокола, или барабана. В случае колебаний колокола (рис.1), вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории движения, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе колокола и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения. То есть, если колокол ударить, то он будет резонировать с определенной частотой (или частотами). Если он находится в состоянии покоя, то он не будет совершать колебания на резонансной частоте.

Читать еще:  Бесконтактное измерение температуры в двигателе

Рис.1 Периодические колебания колокола

Резонанс — это свойство машины, когда она работает или не работает. Следует отметить, что динамическая жесткость вала при вращении машины может сильно отличаться, от статической жёсткости, когда машина не работает, при этом резонанс ее изменяется не существенно.

Есть такое неизменное правило, основанное на практическом опыте, которое гласит, что резонансные частоты, измеренные при останове (выбеге) машины меньше на 20 процентов частоты вынужденных колебаний. Резонансные частоты отдельных узлов и деталей машины, таких как вал, ротор, корпус, и фундамент — это колебания на их собственной частоте.

После монтажа машины резонансные частоты могут поменять свое значение из-за изменения параметров системы (массы, жесткости и демпфирования), которые после соединения всех механизмов машины в единый агрегат могут увеличиться или снизиться. Кроме того, динамическая жесткость, как отмечалось выше, может сдвинуть резонансные частоты, когда машины работают на номинальной частоте вращения. Большинство машин проектируются таким образом, чтобы ротор не имел собственную частоту колебаний такую же, как вал. Машина, состоящая из одного или двух механизмов не должна эксплуатироваться на резонансной частоте. Однако, при ее износе и изменении зазоров в машине, очень часто собственная частота смещается в сторону рабочей частоты вращения, вызывая резонанс.

Внезапное появление колебаний на частоте дефекта, таком как ослабление посадки или другого, могут вызвать колебания машины на резонансной частоте. При этом вибрация машины возрастет с допустимого уровня до недопустимого, если колебания вызваны резонансом узлов или элементов машины.

Рис.2 Амплитудо-фазочастотная характеристика ротора при пуске или останове машины

Например:
Двухскоростная машина работает при 900 об/мин и 1200 об/мин. Машина имеет резонанс на 1200 об/мин, который усиливает вибрацию на частоте вращения 1200об/мин. При 900 об/мин, вибрация составляет 2.54мм/с, а на 1200 об/мин резонанс увеличивает колебания до 12.7 мм/с

Резонанс можно наблюдать при пуске машины, когда она проходит через резонансную частоту (рис.2). Амплитуда при увеличении частоты вращения будет возрастать до максимального значения на резонансной частоте (nрез) , и уменьшаться, после прохождения через нее. При прохождении ротора через резонанс фаза колебаний измениться на 180 градусов. При резонансе колебания системы сдвинуты по фазе на 90 градусов относительно колебаний возбуждающей силы.

Рис.3 Справа колебания ротора имеющего одну плоскость коррекции (диск);

слева колебания сложной системы (двух соединенных роторов).

Сдвиг фаз на 180 градусов часто наблюдается только на роторах имеющих одну единственной плоскость коррекции (рис.3, слева). Более сложные системы «вал/ротор-опора» (рис.3 справа) имеют сдвиг фаз, который находится в пределах 1600 — 180 градусов. Всякий раз, когда специалист по анализу вибрации наблюдает высокую амплитуду колебаний, он должен предполагать, что рост ее до недопустимого уровня, возможно, связан с резонансом системы.

9 комментариев

Повторяться не буду, если не знаете, тогда смотрите в этой нашей статье.

Повторяться не буду, если не знаете, тогда смотрите в этой нашей статье. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой.

Двигатель остановился.

Частотные преобразователи — важный элемент системы управления двигателем, могут быть заменены симисторами для плавного пуска, которые подключаются по трехфазной схеме. Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи в раз больше номинального и невозможность простыми методами плавно изменять скорость вращения двигателей.

Схема управления двигателем с помощью магнитного пускателя Схема показана на рисунке. Вторая защита — электрическая. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка. Единственной доступной информацией при этом может быть лишь серийная маркировка на корпусе, остальное — мощность, тип, возможные системы управления двигателем — придется поискать в технических справочниках.


Похожие материалы:. Максимальной мощности двигателя на В в сети В можно достичь используя соединение типа треугольник. Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю.

Самый простой и распространенный метод регулировки частоты вращения. Между обмотками возбуждения и якоря нет электрической связи. Двигатель остановился. Фазное напряжение — разница потенциалов между началом и концом одной фазы. Рассмотрим способы подключения электродвигателей согласно типу, начнем количеством фаз — одна или три.

Если к нижней части обмотки якоря подключить электрический ток в одном направлении, а к верхней- в обратном- он начнет вращаться. При необходимости смены направления вращения необходимо нажать на кнопку SB1 «Стоп», двигатель остановится и после этого при нажатии на кнопку SB3 двигатель начинает вращаться в другую сторону. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя. Реверс образуется изменением полярности включения пусковой обмотки однофазных двигателей, коммутацией последовательности фаз трехфазных.
Схема управления двигателем с двух и трех мест

Читать еще:  3g83 двигатель технические характеристики

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:

Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен:

Эта формула показывает, что потери происходят за счет активной мощности:

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Резонанс в электрической цепи

Схема (RLC) – это электрическая цепь с последовательными, параллельными или комбинированными соединениями компонентов (резисторами, индукционными катушками и конденсаторами). (RLC) – это сочетание сопротивления, индуктивности и емкости.

Векторная диаграмма в случае последовательного соединения (RLC) -цепи бывает емкостной, активной или индуктивной.

В индуктивной векторной диаграмме резонанс напряжений появляется лишь при нулевом сдвиге фаз и совпадении сопротивлений индукции и емкости.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Проверка электродвигателя с фазным ротором

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:

  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector