0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель 3500 оборотов

Принцип работы асинхронного двигателя

Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.

Электрические машины переменного тока нашли широкое распространение, как в сфере промышленности (шаровые мельницы, дробилки, вентиляторы, компрессоры), так и в домашних условиях (сверлильный и наждачный станки, циркулярная пила).

Основная их часть является бесколлекторными машинами, которые в свою очередь разделяются на асинхронные и синхронные.

Асинхронные и синхронные электрические машины обладают одним замечательным свойством под названием обратимость, т.е. они могут работать как в двигательном режиме, так и в генераторном.

Но чтобы дальше перейти к более подробному их рассмотрению и изучению, необходимо знать принцип их работы. Поэтому в сегодняшней статье я расскажу Вам про принцип работы асинхронного двигателя. После прочтения данного материала Вы узнаете про электромагнитные процессы, протекающие в электродвигателях.

Принцип работы трехфазного асинхронного двигателя

С устройством асинхронного двигателя мы уже знакомились, поэтому повторяться второй раз не будем. Кому интересно, то переходите по ссылочке и читайте.

При подключении асинхронного двигателя в сеть необходимо его обмотки соединить звездой или треугольником. Если вдруг на выводах в клеммнике отсутствует маркировка, то необходимо самостоятельно определить начала и концы обмоток электродвигателя.

При включении обмоток статора асинхронного двигателя в сеть трехфазного переменного напряжения образуется вращающееся магнитное поле статора, которое имеет частоту вращения n1. Частота его вращения определяется по следующей формуле:

  • f — частота питающей сети, Гц
  • р — число пар полюсов

Это вращающееся магнитное поле статора пронизывает, как обмотку статора, так и обмотку ротора, и индуцирует (наводит) в них ЭДС (Е1 и Е2). В обмотке статора наводится ЭДС самоиндукции (Е1), которая направлена навстречу приложенному напряжению сети и ограничивает величину тока в обмотке статора.

Как Вы уже знаете, обмотка ротора замкнута накоротко, у электродвигателей с короткозамкнутым ротором, или через сопротивление, у электродвигателей с фазным ротором, поэтому под действием ЭДС ротора (Е2) в ней появляется ток. Так вот взаимодействие индуцируемого тока в обмотке ротора с вращающимся магнитным полем статора создает электромагнитную силу Fэм.

Направление электромагнитной силы Fэм можно легко найти по правилу левой руки.

Правило левой руки для определения направления электромагнитной силы

На рисунке ниже показан принцип работы асинхронного двигателя. Полюса вращающегося магнитного поля статора в определенный период обозначены N1 и S1. Эти полюса в нашем случае вращаются против часовой стрелки. И в другой момент времени они будут находится в другом пространственном положении. Т.е. мы как бы зафиксировали (остановили) время и видим следующую картину.

Токи в обмотках статора и ротора изображены в виде крестиков и точек. Поясню. Если стоит крестик, то значит ток в этой обмотке направлен от нас. И наоборот, если точка, то ток в этой обмотке направлен к нам. Пунктирными линиями показаны силовые магнитные линии вращающегося магнитного поля статора.

Устанавливаем ладонь руки так, чтобы силовые магнитные линии входили в нашу ладонь. Вытянутые 4 пальца нужно направить вдоль направления тока в обмотке. Отведенный большой палец покажет нам направление электромагнитной силы Fэм для конкретного проводника с током.

На рисунке показаны только две силы Fэм, которые создаются от проводников ротора с током, направленным от нас (крестик) и к нам (точка). И как мы видим, электромагнитные силы Fэм пытаются повернуть ротор в сторону вращения вращающегося магнитного поля статора.

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен от нас (крестик).

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен к нам (точка).

Совокупность этих электромагнитных сил от каждого проводника с током создает общий электромагнитный момент М, который приводит во вращение вал электродвигателя с частотой n.

Отсюда и произошло название асинхронный двигатель. Частота вращения ротора n всегда меньше частоты вращающегося магнитного поля статора n1, т.е. отстает от нее. Для определения величины отставания введен термин «скольжение», который определяется по следующей формуле:

Выразим из этой формулы частоту вращения ротора:

Пример расчета частоты вращения двигателя

Например, у меня есть двигатель типа АИР71А4У2 мощностью 0,55 (кВт):

  • число пар полюсов у него равно 4 (2р=4, р=2)
  • частота вращения ротора составляет 1360 (об/мин)

Определим частоту вращения поля статора этого двигателя при частоте питающей сети 50 (Гц):

Найдем величину скольжения для этого двигателя:

Кстати, направление движения вращающегося магнитного поля статора, а следовательно, и направление вращения вала электродвигателя, можно изменить. Для этого необходимо поменять местами любые два вывода источника питающего трехфазного напряжения. Об этом я упоминал Вам в статьях про реверс электродвигателя и чередование фаз.

Принцип работы асинхронного двигателя. Выводы

Зная принцип работы асинхронного двигателя, можно сделать вывод, что электрическая энергия преобразуется в механическую энергию вращения вала электродвигателя.

Частота вращения магнитного поля статора, а следовательно и ротора, напрямую зависит от числа пар полюсов и частоты питающей сети. Если число пар полюсов ограничивается типом двигателя (р = 1, 2, 3 и 4), то частоту питающей сети можно изменить в большем диапазоне, например, с помощью частотного преобразователя.

Если в нашем примере частоту питающей сети увеличить всего на 10 (Гц), то частота вращения магнитного поля статора увеличится на 300 (об/мин).

Опыт по установке и монтажу частотных преобразователей у меня есть, но не большой. Несколько лет назад на городском водоканале мы проводили замену двух высоковольтных двигателей насосов холодной воды на низковольтные двигатели с частотными преобразователями. Но это уже отдельная тема для разговора. Сейчас покажу Вам несколько фотографий.

Читать еще:  Что такое поршень двигателя внутреннего сгорания

Вот фотография старого высоковольтного двигателя напряжением 6 (кВ).

А это новые двигатели напряжением 400 (В), установленные вместо старых высоковольтных.

Вот шкафы частотных преобразователей. На каждый двигатель свой шкаф. К сожалению, изнутри сфотографировать не успел.

Подписывайтесь на рассылку новостей с моего сайта, чтобы не пропустить самое интересное. В ближайшее время я расскажу Вам про пуск и способы регулирования частоты вращения трехфазных асинхронных двигателей двигателей, схемы их подключения и многое другое.

Каталог электродвигателей 3000 об/мин

Мощность электродвигателя 3000 об.мин, кВтОбщепромышленныеВзрывозащищенные
КитайНКЭМЗ, УкраинаВЭМЗ, складского хранения
3/3000АИР90L24АМ90L2АИММ90L2
4/3000АИР100S2АМУ112М24АМ100S2АИММ100S2
5,5/3000АИР100L2АМУ132SA24АМ100L2АИММ100L2
7,5/3000АИР112M2АИРУ112М24АМ112М2АИММ112М2
11/3000АИР132М26АМУ132М24АМ132М2АИММ132М2
15/3000АИР160S26AMУ160S24АМ160S2АИММ160S2
18,5/3000АИР160М26АМУ160М24АМ160М2АИММ160М2
22/3000АИР180S24AMУ180S24АМ180S2АИММ180S2
30/3000АИР180М24АМУ180М24АМ180М2АИММ180М2
37/3000АИР200М24АМУ200М24АМ200М2АИММ200М2
45/3000АИР200L24АМУ200L24АМ200L2АИММ200L2
55/3000АИР225М24АМУ225М24АМ225М2АИММ225М2
75/3000АИР250S24AMУ250S24АМ250S2АИММ250S2
90/3000АИР250М24АМУ250М24АМ250М2АИММ250М2
110/3000АИР280S24AMУ280S24АМ280S2АИММ280S2
132/3000АИР280М24АМУ280М24АМ280М2АИММ280М2
160/3000АИР315S26АМУ315S24АМ315S2ВАО315S2
200/3000АИР315М26АМУ315М24АМ315М2ВАО2 280L2
250/3000АИР355S26АМУ355S2_________ВАО2 315S2
315/3000АИР355М26АМУ355М2_________ВАО2 315L2

Габариты электродвигателей 3000 об/мин:

  • АИР 56
  • АИР 63
  • АИР 71
  • АИР 80
  • АИР 90
  • АИР 100
  • АИР 112
  • АИР 132
  • АИР 160
  • АИР 180
  • АИР 200
  • АИР 225
  • АИР 250
  • АИР 280
  • АИР 315
  • АИР 355

Выбор инвертора

Благодаря усилиям лоббистов местных энергетических компаний в сочетании с преимуществами, получаемыми при возможности регулирования скорости вращения ротора двигателей, все более распространенными становятся частотно-регулируемые приводы (ЧРП, англ. variable frequency drive, VFD). При их использовании особое внимание следует уделять генерации электромагнитных помех, которая характерна для таких приводов исходя из самой их природы. Для того чтобы электродвигатель мог использоваться с ЧРП, необходимо учитывать несколько технических особенностей, которым должен удовлетворять подходящий по остальным характеристикам электродвигатель. Среди них можно выделить две главные:

Максимально допустимое напряжение изоляции обмоточных проводов статора электродвигателя.

Электрическая прочность изоляции провода, из которого выполнена обмотка статора асинхронного электродвигателя, находится в пределах 1000–1600 В, но, как правило, в документации указывается значение прочности изоляции, равное 1200 В. Однако чем больше воздушный зазор между приводом и двигателем, тем, естественно, бо́льшим скачкам переходного напряжения, воздействующим на двигатель, он может противостоять. Электродвигатель, в котором для обмотки статора используется провод с электрической прочностью изоляции провода, равной 1600 В, может иметь ссылку на стандарт Национальной ассоциации производителей электрооборудования (NEMA, США) NEMA MG-1 2003, раздел 4, параграф 31, в котором говорится, что двигатель должен выдерживать без повреждений начальное напряжение коронного разряда (англ. corona inception voltage, CIV) уровнем до 1600 В.

Коэффициент сохранения постоянного крутящего момента (CT) двигателя, часто упоминается как «xx: 1 CT».

Этот показатель дает представление о диапазоне регулирования скорости. По нему можно узнать, насколько может быть снижена скорость вращения ротора двигателя, при которой он будет работать с сохранением того же крутящего момента (англ. CT — constant torque, постоянный крутящий момент), что и при номинальной скорости. Ниже этого значения крутящего момента производительность асинхронного электродвигателя снижается.

Например, возьмем электродвигатель мощностью 10 л. с. с начальной скоростью 1800 об/мин. При номинальной скорости (около 1800 об/мин), как указано, он имеет крутящий момент 29 фунтов на фут. Если в спецификации на электродвигатель написано, что коэффициент сохранения номинальной мощности составляет 10:1 CT, это означает, что такой электродвигатель может обеспечить номинальный крутящий момент до скорости 180 об/мин. Если же указано, что электродвигатель имеет коэффициент сохранения номинальной мощности 1000:1 CT, то имеется в виду, что крутящий момент сможет сохранять номинальное значение до скорости 1,8 об/мин.

При этом необходимо учитывать еще один нюанс, который связан с охлаждением электродвигателя. Нужно обязательно уточнить у поставщика, будет ли электродвигатель перегреваться при длительной работе на малых оборотах. Дело в том, что если двигатель охлаждается за счет крыльчатки, закрепленной на его валу, то на малых скоростях вы столкнетесь с низкой скоростью охлаждающего двигатель потока воздуха. Если асинхронный электродвигатель работает на низкой скорости и в течение длительного времени используется с большим крутящим моментом, то он будет выделять много тепла — при таких условиях, возможно, придется остановить свой выбор на двигателе с иным методом охлаждения.

Например, для организации принудительного охлаждения можно применить воздуходувное устройство, имеющее собственный, отдельно управляемый двигатель. Производительность такого устройства не связана с системой управления электропривода. В этом случае воздушный поток, который обдувает мощный электродвигатель, будет постоянным и достаточным для его охлаждения при низкой или даже при нулевой скорости.

Что дает преобразователь?

Необходимость использования регулятора оборотов электродвигателя в случае асинхронных моделей состоит в следующем:

Достигается значительная экономия электрической энергии. Поскольку не всякое оборудование требует высоких скоростей вращения моторного вала, ее имеет смысл снизить на четверть.

Обеспечивается надежная защита всех механизмов. Преобразователь частоты позволяет контролировать не только температуру, но и давление и прочие параметры системы. Этот факт особенно важен, если при помощи двигателя приводится в действие насос.

Датчик давления устанавливается в емкости, посылает сигнал при достижении должного уровня, благодаря чему мотор останавливается.

Совершается плавный пуск. Благодаря регулятору снимается необходимость использования дополнительных электронных устройств. Частотный преобразователь легко настроить и получить желаемый эффект.

Снижаются расходы на техническое обслуживание, поскольку регулятор сводит к минимуму риски поломки привода и других механизмов.

Таким образом электродвигатели с регулятором оборотов оказываются надежными устройствами с широкой сферой применения.

Важно помнить, что эксплуатация любого оборудования на основе электрического мотора только тогда окажется правильной и безопасной, когда параметр частоты вращения будет адекватен условиям использования.

Как сделать устройство для изменения скорости вращения электродвигателя своими руками

Для регулировки маломощных однофазных АД можно использовать диммеры. Однако этот способ ненадежен и обладает серьезными недостатками: снижением КПД, серьезным перегревом устройства и опасностью повреждения двигателя.

Для надежного и качественного регулирования оборотов электродвигателей на 220В, лучше всего подходит частотное регулирование.

Приведенная ниже схема позволяет собрать частотное устройство для регулировки электромоторов мощностью до 500 Вт. Изменение скорости вращения производится в границах от 1000 до 4000 оборотов в минуту.

Устройство состоит из задающего генератора с изменяемой частотой, состоящего из мультивибратора, собранного на микросхеме К561ЛА7, счетчика на микросхеме К561ИЕ8, полумоста регулятора. Выходной трансформатор Т1 выполняет развязку верхнего и нижнего транзисторов полумоста.

Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4. Выпрямитель, удвоитель напряжения питающей сети, включает в себя диодный мост VD9, с конденсатором фильтра на которых происходит удвоение напряжения питания полумоста.

Напряжение первичной обмотки: 2х12В, вторичной обмотки 12В. Первичная обмотка трансформатора управления ключами, состоит из 120 витков медного провода сечением 0,7мм, с отводом от середины. Вторичная – две обмотки, каждая по 60 витков повода сечением 0,7 мм.

Вторичные обмотки необходимо максимально надежно заизолировать друг от друга, так как разница потенциалов между ними доходит до 640 В. Подключение выходных обмоток к затворам ключей производится в противофазе.

Вот мы и рассмотрели способы регулировки оборотов асинхронных двигателей. Если возникли вопросы, задавайте их в комментариях под статьей!

Условные обозначения АДЧР

Модификации асинхронных электродвигателей АДЧР

АДЧР 0 — двигатель с частотным регулированием АДЧР базового исполнения.

Отсутствуют — электромагнитный тормоз, датчик скорости / положения и независимая вентиляция. Предназначен для эксплуатации в составе частотно-регулируемого привода, питается от стандартной сети трехфазного тока. Выпускается во всех стандартных габаритных размерах асинхронных двигателей. Эффективное охлаждение двигателя обеспечивается начиная с выходной частоты инвертора порядка 30Гц, в виду того что для охлаждения асинхронного электродвигателя используется вентилятор который установлен на валу двигателя (самостоятельная вентиляция), допускаемая глубина регулирования примерно 1:3. Используется в составе регулируемого привода для вентиляторов, конвейеров, насосов и т.п. или заменяет обычный асинхронный электродвигатель.

АДЧР В — двигатель с частотным регулированием и независимой системой вентиляции.

Отсутствуют — электромагнитный тормоз и датчик скорости / положения. Предназначен для эксплуатации в составе частотно-регулируемого привода при длительной работе во всех диапазонах рабочих скоростей. Выпускается во всех стандартных габаритных размерах асинхронных электродвигателей. Датчик скорости/положения в данной модификации асинхронного двигателя отсутствует, поэтому максимальная глубина регулирования с преобразователем частоты может составлять 1:10, при использовании специальных типов инверторов до 1:20-40. Используются в центрифугах, конвейерных системах, автоматических линиях и т.п.

АДЧР Т — электродвигатель с частотным регулированием и электромагнитным тормозом.

Отсутствуют — датчик скорости / положения и независимая вентиляция отсутствуют. Предназначен для эксплуатации в составе частотно-регулируемого привода — статический тормоз, или с работой от стандартной сети питания — динамический тормоз, с необходимостью обеспечивать удержание вала двигателя при отключении силового питания двигателя, а так же в системах, требующих повышенной безопасности. Выпускается во всех габаритных размерах электродвигателей. Эффективное охлаждение обеспечивается, начиная с выходной частоты инвертора порядка 30Гц, в виду того что для охлаждения асинхронного электродвигателя используется вентилятор установленный на валу двигателя (самостоятельная вентиляция), допускаемая глубина регулирования 1:3. Максимальная скорость – не превышает номинальную. При эксплуатации такого типа асинхронного двигателя при прямом питании от стандартной питающей сети 50/60Гц, необходима установка динамического тормоза. Применяется в грузоподъемных механизмах, автоматических линиях, конвейерных системах, центрифугах, и т.п.

Статический тормоз – обеспечивает удержание остановленного двигателя. Допускается останавливать двигатель с рабочей скорости статическим тормозом только в случае аварийной ситуации!

АДЧР ДВ — асинхронный двигатель с датчиком скорости / положения и независимой вентиляцией.

Отсутствует — электромагнитный тормоз. Предназначен для работы в составе частотно-регулируемого привода, при необходимости для обеспечения большой глубины регулирования по скорости, точного контроля скорости вращения, управления моментом, в любом диапазоне скоростей от 0 об/мин до максимальной скорости. Выпускается во всех стандартных габаритных размерах электродвигателей. Применяются в точном машиностроении, для станков с ЧПУ, грузоподъемных механизмов, конвейерных систем, автоматических линий и т.п.

АДЧР ТДВ — асинхронный электродвигатель с электромагнитным тормозом, датчиком скорости/положения и независимой вентиляцией.

Предназначен для работы в составе частотно-регулируемого привода, а так же для обеспечения точного контроля скорости вращения, получения большого диапазона регулирования по скорости, управления моментом в любом диапазоне скоростей от 0 об/мин до максимальной в технологических процессах, где требуется удержание вала электродвигателя при отключении питания асинхронного двигателя или имеются требования по безопасности оборудования. Выпускается во всех габаритных размерах электродвигателей. Применяется в точном машиностроении, для станков с ЧПУ, грузоподъемных механизмов, конвейерных систем, автоматических линий.

Статический тормоз – обеспечивает удержание остановленного двигателя. Допускается останавливать двигатель с рабочей скорости статическим тормозом только в случае аварийной ситуации!

Отличия электродвигателя с частотным регулированием АДЧР

Специальная обмотка статора.

Электродвигатель АДЧР имеет обмотку, предназначенную для работы с источником питания, выдающим прямоугольные импульсы напряжения(ШИМ). Частотно-регулируемые двигатели имеют специальную систему изоляции обмотки, стойкую к высокой скорости нарастания напряжения. Работа общепромышленного двигателя от преобразователя частоты сокращает срок службы двигателя т.к. общепромышленные моторы предназначены для питания от сети переменного тока синусоидальной формы фиксированной частоты. Специальная технология изготовления обмотки двигателей АДЧР и специальный обмоточный провод предотвращают систему изоляции от преждевременного разрушения и от короткого замыкания, а также выхода из строя электродвигателя.

Повышенные требования по вибрации для двигателей АДЧР.

Часто электродвигатели АДЧР работают на скоростях выше, чем аналогичные общепромышленные электродвигатели, поэтому к роторам таких двигателей предъявляются более строгие требования по уровню вибрации. Роторы электродвигателей серии АДЧР точно отбалансированы и имеют низкий уровень вибрации по сравнению с общепромышленными моторами, что положительно сказывается на сроке службы электродвигателя и связанного оборудования.

Надежный подшипниковый узел двигателей АДЧР.

Электродвигатели АДЧР комплектуются подшипниками производства SKF, которые гарантируют высокое качество и длительный срок эксплуатации, что снижает затраты на обслуживание двигателей.

Дополнительное оборудование и независимая вентиляция.

Двигатель АДЧР работает в диапазоне частот вращения с необходимым уровнем нагрузки, в то время как общепромышленные двигатели предназначен для работы на одной фиксированной скорости вращения. Работа стандартных электродвигателей на скоростях ниже номинальной вызывает перегрев и выход их строя, а работа на повышенных скоростях приводит к потере мощности и увеличению шума. Электродвигатели АДЧР (АДЧР-В, -ДВ, -ТДВ) с установленным узлом независимой вентиляции лишены этих недостатков и могут работать в режиме постоянного момента на валу от самой минимальной до максимальной скорости.

По требованию заказчика частотно-регулируемые электродвигатели АДЧР могут быть оснащены:

  • электромагнитным тормозом — для торможения и удержания вала электродвигателя после остановки или в аварийной ситуации, что актуально, в первую очередь, для системы кранового привода (АДЧР-Т, -ТВ, -ТДВ);
  • датчиком обратной связи — для регулирования и позиционирования в точных системах с векторным управлением с глубиной до 1:10000 (АДЧР-ДВ, -ТДВ).

Целесообразно использовать ЧАСТОТНЫЕ ПРЕОБРАЗОВАТЕЛИ не в качестве элементов системы управления конкретного агрегата, а как составляющую комплексных системных решений с подключением широкого набора средств автоматизации технологических процессов. Такие решения позволяют получить эффект, который заведомо больше простой экономии электрической энергии.

Установка независимой вентиляции на двигателе АДЧР дает возможность увеличения диапазона по минимальной и максимальной скорости предохраняя от перегрева на разных скоростях.

Электромагнитный тормоза устанавливаемый на АДЧР выполняет задачи по удержанию нагрузки при отключенном силовом питании двигателя, а так же обеспечивает безопасность оборудования, на которое устанавливается асинхронный электродвигатель.

Датчик скорости/положения энкодер установленный на асинхронных двигателях АДЧР, предназначен для обеспечения работы в системах точного регулирования и позиционирования, требующих реального контроля скорости, а так же в системах требующих управление моментом вращения механизма.

1.5;
«1Е» — тормоз по техническому заданию (далее- ТЗ).

Дополнительное исполнение
электромагнитного тормоза

«Х» — отсутствие опций;
«1» — с контролем срабатывания;
«2» -с ручным растормаживанием;
«3» — с контролем срабатывания и ручным растормаживанием.

Условное обозначение
напряжения питания
тормоза

«1» — 24 В DC;
«2» — 220 В AC (через выпрямитель);
«3» — 380В AC (через выпрямитель).

Тип сигнала ДОС

«Т» — ТТL 5В;
«Н» — HTL 10-30В;
«R» -резольвер 7В 8-10кГц;
«S» -sin/cos 1В;
«Z» — ДОС по ТЗ.

Разрешающая способ-ность
ДОС

Исполнение узла
принудительной вентиляции

«1» — встроенный электровентилятор EBM 1ф

230 + 10% В 50 Гц;
«2» — встроенный электровентилятор EBM 3ф

400 + 10% В 50 Гц;
«5» — встроенный электровентилятор Zhiell-Abegg 3ф

400 + 10% В 50 Гц;
«3» -вентилятор с приводным электродвигателем типа АДМ или аналогичным.

Код дополнительной
модификации
(индивидуальные свойства)

«001-999» -служит для обозначения ТЗ, по которому изготавливается двигатель.
Присваивается Производителем.

Взрывозащищенные электродвигатели предназначены для привода механизмов внутренних и наружных установок в газовой, нефтедобывающей, химической и других смежных отраслях промышленности (кроме рудничных производств), где могут образовываться взрывоопасные газо и паро — воздушные смеси, отнесенные к категориям IIA и IIB и группам воспламеняемости T1, T2, T3, T4.

Электродвигатели купить по цене производителя можно в компании «ИН-ТЕХ» — доставка по России осуществляется с помощью автотранспортных компаний «Деловые линии» или «ПЭК». Для уточнения стоимости оборудования нужно обратиться к менеджерам с помощью онлайн-чата или по телефону 8 (800) 444-24-71

Поможем подобрать аналог к приводу любого производителя

Гибкая система скидок

Индивидуальный подход к каждому клиенту

Наличие на складе

Оперативная доставка по всей России

Гарантия до 24 месяцев

Вы оставляете заявку на сайте или связываетесь с менеджером

Вы получаете коммерческое предложение в день обращения

Согласовываем состав оборудования и заключаем договор

Мы производим оборудование по Вашему заказу или поставляем из наличия

Доставляем оборудование по указанному адресу

Осуществляем доставку по всем регионам России.

Бесплатно доставляем до терминала автотранспортной компании «Деловые линии» или «ПЭК»

  • Москва
  • Санкт-Петербург
  • Новосибирск
  • Екатеринбург
  • Нижний Новгород
  • Казань
  • Челябинск
  • Омск
  • Самара
  • Ростов-на-Дону
  • Уфа
  • Красноярск
  • Пермь
  • Воронеж
  • Волгоград
  • Краснодар
  • Саратов
  • Тюмень
  • Тольятти
  • Ижевск
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector